www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aussagen und Schaltalgebra
Aussagen und Schaltalgebra < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen und Schaltalgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Do 05.12.2013
Autor: Ultramann

Aufgabe
Es gibt K, S und C.
A1= Wenn C, dann nicht S
A2= Wenn K, aber nicht C, dann S.

Stellen Sie A1 und A2 als logische Ausdrücke mit [mm] \wedge [/mm] , [mm] \vee [/mm] und [mm] \neg [/mm] auf.

Hallo :)

Ich tu mich da ein bißchen schwer...

Also A1= Wenn C, dann nicht S.

Da habe ich: (C [mm] \to \neg [/mm] S)

Das wiederum ist ja dasselbe wie [mm] (\neg [/mm] C [mm] \vee \neg [/mm] S)
richtig?

Nun A2= Wenn K, aber nicht C, dann S.

Da habe ich: ((K [mm] \wedge \neg [/mm] C) [mm] \to [/mm] S)

Und das wiederum ist: [mm] ((\neg [/mm] K [mm] \vee [/mm] C) [mm] \vee [/mm] S)
Kann das stimmen?
Dann würde A2 ja immer stimmen, sobald S an ist. Das ist aber doch nicht richtig...

        
Bezug
Aussagen und Schaltalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Do 05.12.2013
Autor: schachuzipus

Hallo,

> Es gibt K, S und C.
> A1= Wenn C, dann nicht S
> A2= Wenn K, aber nicht C, dann S.

>

> Stellen Sie A1 und A2 als logische Ausdrücke mit [mm]\wedge[/mm] ,
> [mm]\vee[/mm] und [mm]\neg[/mm] auf.
> Hallo :)

>

> Ich tu mich da ein bißchen schwer...

>

> Also A1= Wenn C, dann nicht S.

>

> Da habe ich: (C [mm]\to \neg[/mm] S) [ok]

>

> Das wiederum ist ja dasselbe wie [mm](\neg[/mm] C [mm]\vee \neg[/mm] S)
> richtig?

[ok]

Ja!

>

> Nun A2= Wenn K, aber nicht C, dann S.

>

> Da habe ich: ((K [mm]\wedge \neg[/mm] C) [mm]\to[/mm] S) [ok]

>

> Und das wiederum ist: [mm]((\neg[/mm] K [mm]\vee[/mm] C) [mm]\vee[/mm] S)
> Kann das stimmen?

Gem. de Morgan ist das korrekt!

> Dann würde A2 ja immer stimmen, sobald S an ist. Das ist
> aber doch nicht richtig...

Warum nicht?

Eine Aussage (Implikation) [mm]p\rightarrow q[/mm] ist doch immer wahr, wenn [mm]q[/mm] wahr ist, hier ist also mit [mm]S=1[/mm] die Aussage [mm]A_2[/mm] stets wahr ...

Gruß

schachuzipus

Bezug
                
Bezug
Aussagen und Schaltalgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Do 05.12.2013
Autor: Ultramann

Danke für die Antwort.

Bei mir hapert es etwas an A2.

Sagen wir mal per Wahrheitstabelle wird K=1, S=1 und C=1 gestellt.

Wenn [mm] ((\neg [/mm] K [mm] \vee [/mm] C) [mm] \vee [/mm] S) richtig ist, dann müsste A2 für den Fall, dass alle an sind, stimmen.

Aber das passt doch gar nicht zu dem Satz "Wenn K, aber nicht C, dann S".
Oder irre ich mich da? Sowohl K als auch C sind an, wieso ist S dann auch an, wenn der Satz lautet "Wenn K, aber nicht C, dann S"?

Bezug
                        
Bezug
Aussagen und Schaltalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Do 05.12.2013
Autor: schachuzipus

Hallo nochmal,

> Danke für die Antwort.

>

> Bei mir hapert es etwas an A2.

>

> Sagen wir mal per Wahrheitstabelle wird K=1, S=1 und C=1
> gestellt.

ok

>

> Wenn [mm]((\neg[/mm] K [mm]\vee[/mm] C) [mm]\vee[/mm] S) richtig ist, dann müsste A2
> für den Fall, dass alle an sind, stimmen.

Ja!

>

> Aber das passt doch gar nicht zu dem Satz "Wenn K, aber
> nicht C, dann S".
> Oder irre ich mich da? Sowohl K als auch C sind an, wieso
> ist S dann auch an, wenn der Satz lautet "Wenn K, aber
> nicht C, dann S"?

Ich dachte, du betrachtest denn Fall [mm]K=C=S=1[/mm], dann sind doch eh alle an und [mm]A_2[/mm] stimmt, weil zB. S oder auch C an sind und damit die Disjunktion

Wenn der erste Teil, also "Wenn K, aber nicht C", was ja bedeutet "K und nicht C", falsch ist, dann ist egal, was S macht, denn eine Implikation [mm]p\rightarrow q[/mm] ist für [mm]p=0[/mm] wahr - egal, ob q=1 oder q=0 (aus Falschem kannst du alles folgern)

[mm]p\rightarrow q[/mm] liefert nur dann falsch, wenn [mm]p=1[/mm] und [mm]q=0[/mm] ist.

Wir hatten nach dem ersten Umschreiben:

[mm]A_2: (K\wedge\neg C)\rightarrow S[/mm]

Hier ist [mm]p=K\wedge\neg C[/mm] und [mm]q=S[/mm]

[mm]p=1[/mm] genau dann, wenn [mm]K=1, C=0[/mm]

Also liefert insgesamt [mm]A_2[/mm] nur für die Belegung [mm]K=1, C=0, S=0[/mm] ein "falsch".

Für alle anderen Belegungen sollte [mm]A_2[/mm] erfüllt sein.

Passt das zur WWT?


Gruß

schachuzipus

Bezug
                                
Bezug
Aussagen und Schaltalgebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Do 05.12.2013
Autor: Ultramann

Achso, ich denke jetzt habe ich es verstanden. Vor allem der Teil

"Wenn der erste Teil, also "Wenn K, aber nicht C", was ja bedeutet "K und nicht C", falsch ist, dann ist egal, was S macht, denn eine Implikation $ [mm] p\rightarrow [/mm] q $ ist für $ p=0 $ wahr - egal, ob q=1 oder q=0 (aus Falschem kannst du alles folgern)

$ [mm] p\rightarrow [/mm] q $ liefert nur dann falsch, wenn $ p=1 $ und $ q=0 $ ist."

hat mir geholfen.
Danke.

Und ja, wenn  K=1, C=0, S=0 , dann ist A2 falsch. Sonst ist es immer richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de