www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Aussagen zu Lp-Räumen
Aussagen zu Lp-Räumen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen zu Lp-Räumen: Wahr/Falsch Klausuraufgaben
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 17.08.2011
Autor: Infostudent

Aufgabe
Für jede Wahl von f, g [mm] \in L^2(\mathbb R^n) [/mm] gilt
[ ] [mm] \lim\limits_{|x| \rightarrow \infty}{f(x)} [/mm] = 0
[ ] f [mm] \in L^1(\mathbb R^n) [/mm]
[ ] fg [mm] \in L^2(\mathbb R^n) [/mm]
[ ] [mm] f|_{B(0,1)} \in L^1(B(0,1)), [/mm] B(0, 1) ist dabei die Einheitskugel im [mm] \mathbb R^n [/mm]

Was ist nun wahr und was falsch? Bin mir eigentlich bei keiner Aussage wirklich sicher. Die erste ergibt schon Sinn, denn wenn die Funktion im positiven und negativen Unendlichen nicht gegen 0 geht, existiert das Integral wohl auch nicht und f [mm] \notin L^2(\mathbb R^n) [/mm]

Bei der zweiten Aussage hätte ich intuitiv wahr gesagt, habe aber gefunden, dass für [mm] \mu(\Omega) [/mm] < [mm] \infty [/mm] und q >= p >= 1 gilt: [mm] L^q \subseteq L^p, [/mm] das würde also bedeuten f [mm] \in L^p(\mathbb R^n), [/mm] p = 2, .. , [mm] \infty [/mm] ?!
Ich kann mir gerade sowieso nicht vorstellen, wann f nur in einer Teilmenge aller [mm] L^p-Räume [/mm] sein kann, denn [mm] \|f\|_p [/mm] müsste doch für jedes p existieren, wenn ich |f| mit einer endlichen Zahl potenziere?!

Bei der dritten habe ich keine Ahnung. [mm] L^p-Räume [/mm] sind Vektorräume, also wäre f + g [mm] \in L^2(\mathbb R^n) [/mm] und af [mm] \in L^2(\mathbb R^n), [/mm] a > 0, aber ich weiß nicht, ob das für fg gilt...

Gleiches bei der vierten. Kann ich die Frage verallgemeinern zu: Ist jede Teilmenge einer Funktion aus einem [mm] L^p-Raum [/mm] auch immer im von dieser Teilmenge gebildeten [mm] L^p-Raum [/mm] oder ist die Kugel ein Spezialfall? Wie finde ich raus, ob die Aussage gilt oder nicht?

Bedanke mich für jegliche Hilfe :)

        
Bezug
Aussagen zu Lp-Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 17.08.2011
Autor: Dath

Zu 1: Warum sollte das gelten? Gegenbeispiel?
Zu 2: Ja, denn allgemein: [mm]L^{q} \subseteq L^{p}, q>=p>=1[/mm].
Zu 3: [mm] (fg,fg)=\overline(f)\overline(g)fg=(f,g)^(2)[/mm] Hilft das?
Zu 4: Einfach das Maß auf die Kugel einschränken. Dann gilt:
[mm]\integral_{\IR^{n}}fd\mu >= \integral_{\IR^{n}}\delta(B(0,1))fd\mu[/mm]. Insbesondere wenn das Maß auf der Einheitskugel im Rn dasselbe ist wie das in Rn.

Bezug
        
Bezug
Aussagen zu Lp-Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mi 17.08.2011
Autor: no_brain_no_pain

Die 3. Aussage ist falsch. Es gilt aber $f [mm] \* [/mm] g [mm] \in L^1$. [/mm]
Denn $0 [mm] \le [/mm] ( |f| - |g| [mm] )^2 [/mm] = [mm] |f|^2 [/mm] - 2|fg| + [mm] |g|^2$, [/mm] woraus folgt:
$|fg| [mm] \le \bruch{1}{2} [/mm] (|f| + |g|)$, also Lebesque-inegrierbar.
Das ist eine der Standartaussagen, somit wird sie für [mm] $L^2$ [/mm] wohl nicht gelten, aber ein Gegenbeispiel hab ich jetzt auch nicht parat. Außerdem nützt dir die Vektorraumaussage da ja nix, weil die ja nur was über die skalare Multiplikation sagt.
LG Andre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de