www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aussagenlogik
Aussagenlogik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 07.10.2012
Autor: Thomas000

Aufgabe
Formalisieren und beweisen Sie!
A) Für alle natürlichen Zahlen n gilt: Wenn n gerade ist, dann ist auch das Quadrat von n gerade.
B) Die Quadrate aller ungeraden natürlichen Zahlen sind ungerade.
C) Wenn das Quadrat einer natürlichen Zahl n gerade ist, dann ist auch n selbst gerade.
D) Wenn das Quadrat m einer natürlichen Zahl ungerade ist, dann ist auch wurzel{m} ungerade.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Lösung zu a wäre:
[mm] \forall [/mm] n [mm] \in \IN [/mm] : n gerade [mm] \gdw [/mm] n² gerade

Es sei n gerade.
[mm] \exists [/mm] k [mm] \in \IN: [/mm] n=2k

n² = 4k²
n² = 2 * 2k²
qed

b) [mm] \forall [/mm] n [mm] \in \IN [/mm] : n ungerade [mm] \gdw [/mm] n² ungerade

Es sei n ungerade.
[mm] \exists [/mm] k [mm] \in \IN: [/mm] n=2k + 1

n²= (2k+1)²
n²= 4k² + 4k + 1
n²= 2* (2k²+2k) + 1

qed

Könnt ihr mir bei c und d helfen! Ich denke mal, dass ich dort mit [mm] \exists [/mm] arbeiten muss, bei den Formulierungen.

Danke




        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 So 07.10.2012
Autor: schachuzipus

Hallo Thomas000,


> Formalisieren und beweisen Sie!
>  A) Für alle natürlichen Zahlen n gilt: Wenn n gerade
> ist, dann ist auch das Quadrat von n gerade.
>  B) Die Quadrate aller ungeraden natürlichen Zahlen sind
> ungerade.
>  C) Wenn das Quadrat einer natürlichen Zahl n gerade ist,
> dann ist auch n selbst gerade.
>  D) Wenn das Quadrat m einer natürlichen Zahl ungerade
> ist, dann ist auch wurzel{m} ungerade.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Meine Lösung zu a wäre:
>  [mm]\forall[/mm] n [mm]\in \IN[/mm] : n gerade [mm]\gdw[/mm] n² gerade

Wieso die Äquivalenz? Da steht doch im Text nichts von einer "genau dann, wenn"-Beziehung.

[mm]\forall n\in\IN: n \ \text{gerade} \ \red{\Rightarrow} \ n^2 \ \text{gerade}[/mm]

Und das beweist du im Folgenden ja auch, wenn auch sämtliche Folgerungspfeile fehlen, was massiven Punktabzug gäbe in einer Übung oder Klausur ...

>  
> Es sei n gerade.
>  [mm]\exists[/mm] k [mm]\in \IN:[/mm] n=2k
>  
> n² = 4k²
>  n² = 2 * 2k²
>  qed

Bis auf die fehlenden Beziehungen (die ich mir passend dazu denke) zwischen den leer im Raum stehenden Zeilen ist das richtig.

>  
> b) [mm]\forall[/mm] n [mm]\in \IN[/mm] : n ungerade [mm]\gdw[/mm] n² ungerade

Wieder ist nur die Implikation [mm]\Rightarrow[/mm] formuliert, die du auch beweist. [mm]\Leftarrow[/mm] beweist du im Weiteren nicht (steht auch verbal nicht in der Aufgabe)

Wobei in A) und B) auch die umgekehrte Richtung gilt. Das kannst du dir ja mal überlegen. Wieso folgt aus [mm] $n^2$ [/mm] gerade auch $n$ gerade [mm] ($n\in\IN$) [/mm] ?

>  
> Es sei n ungerade.
>  [mm]\exists[/mm] k [mm]\in \IN:[/mm] n=2k + 1
>  
> n²= (2k+1)²
>  n²= 4k² + 4k + 1
>  n²= 2* (2k²+2k) + 1
>  
> qed

Wie oben ... Idee ist richtig, formal ziemlicher Murks

>  
> Könnt ihr mir bei c und d helfen! Ich denke mal, dass ich
> dort mit [mm]\exists[/mm] arbeiten muss, bei den Formulierungen.

C) [mm]\forall n\in\IN: n^2 \ \text{gerade} \ \Rightarrow \ n \ \text{gerade}[/mm]

D) Nenne die (bel., aber dann feste) nat. Zahl [mm]n[/mm]

Dann ist [mm]m=n^2[/mm]

Versucht die Aussage wie in den anderen Teilen als Implikation zu schreiben ...

>  
> Danke
>  
>
>  

Gruß

schachuzipus


Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 07.10.2012
Autor: Thomas000

Aufgabe
zu c)
Sei n² gerade.
Angenommen n wäre nicht gerade.

[mm] \to \exists [/mm] k [mm] \in \IN [/mm] : n=2k+1
[mm] \to [/mm] n²=4k²+4k+1=2*(2k²+2k)+1

also n² ungerade (Widerspruchzeichen)
n muss also gerade sein.

ich könnte c doch auch über einen indirekten weg beweisen, indem ich zeige, dass, wenn n ungerade ist, ein widerspruch erfolgt. n also gerade sein muss?! habs mal versucht oben darzustellen ;)
[mm] \to \exists [/mm] k [mm] \in \IN [/mm] : n=2k+1
[mm] \to [/mm] n²=4k²+4k+1=2*(2k²+2k)+1

also n² ungerade (Widerspruchzeichen)
n muss also gerade sein.


Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 07.10.2012
Autor: Axiom96

Hallo,

> zu c)
> Sei n² gerade.
>  Angenommen n wäre nicht gerade.
>  
> [mm]\to \exists[/mm] k [mm]\in \IN[/mm] : n=2k+1
>  [mm]\to[/mm] n²=4k²+4k+1=2*(2k²+2k)+1
>  
> also n² ungerade (Widerspruchzeichen)
>  n muss also gerade sein.
>  ich könnte c doch auch über einen indirekten weg
> beweisen, indem ich zeige, dass, wenn n ungerade ist, ein
> widerspruch erfolgt. n also gerade sein muss?! habs mal
> versucht oben darzustellen ;)
>  [mm]\to \exists[/mm] k [mm]\in \IN[/mm] : n=2k+1
>  [mm]\to[/mm] n²=4k²+4k+1=2*(2k²+2k)+1
>  
> also n² ungerade (Widerspruchzeichen)
>  n muss also gerade sein.
>  

Das ist so richtig, allerdings hast du den Fall n=1 nicht mit eingeschlossen. Schreibe also besser [mm] k\in\IN\cup\{0\}. [/mm]

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de