www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aussagenlogik von Mengen
Aussagenlogik von Mengen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 30.10.2010
Autor: Natsu90

Aufgabe
Seien A,B und C Mengen.
Zeigen Sie, dass gilt:
a) [mm] (A\cup B)\cap [/mm] C = [mm] (A\cap C)\cup (B\cap [/mm] C)
Seien A und B Teilmengen einer Menge M. Zeigen Sie,dass gilt:
b) [mm] M\backslash (A\cup [/mm] B) = [mm] (M\backslash A)\cap (M\backslash [/mm] B)
c) [mm] M\backslash (A\cap [/mm] B) = [mm] (M\backslash [/mm] A) [mm] \cup (M\backslash [/mm] B)

Leider hatte ich in der Schule nicht so intensiv Mengenlehre und auch keine Beweisführung oder Warheitstabellen. Daher würde ich mich sehr freuen wenn mir jemand einige Ansatzpunkte und Tipps zum Lösen der Aufgabe geben kann.
Vielen Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussagenlogik von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 So 31.10.2010
Autor: angela.h.b.


> Seien A,B und C Mengen.
>  Zeigen Sie, dass gilt:
>  a) [mm](A\cup B)\cap[/mm] C = [mm](A\cap C)\cup (B\cap[/mm] C)
>  Seien A und B Teilmengen einer Menge M. Zeigen Sie,dass
> gilt:
>  b) [mm]M\backslash (A\cup[/mm] B) = [mm](M\backslash A)\cap (M\backslash[/mm] B)
>  c) [mm]M\backslash (A\cap[/mm] B) = [mm](M\backslash[/mm] A) [mm]\cup (M\backslash[/mm]  B)

Hallo,

zunächst ist festzustellen, daß hier die Gleichheit von Menegen zu zeigen ist.
Nach der Def. der Gleichheit von Mengn, welche sicher in der Vorlesung vorkam, ist also zu zeigen, daß jede menge eine Teilmenge der anderen ist, in a) also

[mm] a1)$(A\cup B)\cap$ [/mm] C [mm] \subseteq $(A\cap C)\cup (B\cap$ [/mm] C)
und
a2) [mm] $(A\cap C)\cup (B\cap$ [/mm] C) [mm] \subseteq $(A\cup B)\cap$ [/mm] C

Solche Aussagen zeigt man elementweise, dh. man zeigt

für [mm] a1)x\in $(A\cup B)\cap$ [/mm] C [mm] \Rightarrow x\in $(A\cap C)\cup (B\cap$ [/mm] C)
und
für a2) [mm] x\in $(A\cap C)\cup (B\cap$ [/mm] C) [mm] \Rightarrow x\in $(A\cup B)\cap$ [/mm] C.

Beweis.
a1)
sei [mm] x\in $(A\cup B)\cap$ [/mm] C

==>

[mm] x\in A\cup [/mm] B und  [mm] x\in [/mm] C   (nach Def. des Schnittes)

==>  usw.

Versuch's mal.

Gruß v. Angela



Bezug
                
Bezug
Aussagenlogik von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 So 31.10.2010
Autor: Natsu90

Hallo Angela,
also wäre der Beweis für a2) dann:
Sei [mm] x\in (A\cap [/mm] C)
[mm] x\in A\cap [/mm] C und [mm] x\in B\cap [/mm] C

Ist das so dann richtig?

Bezug
                        
Bezug
Aussagenlogik von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 So 31.10.2010
Autor: schachuzipus

Hallo Karo,


> Hallo Angela,
>  also wäre der Beweis für a2) dann:
>  Sei [mm]x\in (A\cap[/mm] C)

[haee]

Angela hat dir doch oben hingeschrieben, wie es bei dieser Richtung losgeht?

Das hat sie nicht getan, um dich zu veräppeln, sondern dir einen guten Start zu ermöglichen.

Warum gehst du hier von etwas ganz anderem aus??

Traust du ihr nicht?

Du willst doch zeigen: [mm](A\cap C) \ \cup \ (B\cap C) \ \subseteq \ (A\cup B)\cap C[/mm]

Los geht's damit, dass du dir ein Element aus der Menge linkerhand hernimmst und dann folgerst, dass es in der Menge rechterhand liegt.

Sei also [mm]x\in (A\cap C) \ \cup \ (B\cap C)[/mm]

Soweit hatte Angela dir Starthilfe gegeben.

Wieso setzt du anders an?

Wie dem auch sei, aus der Def. [mm]\cup[/mm] folgt:

[mm]x\in (A\cap C) \ \vee \ x\in (B\cap C)[/mm]

Also [mm](x\in A \wedge x\in C) \ \vee \ (x\in B\wedge x\in C)[/mm] nach Def. [mm]\cap[/mm]

Nun weiter ... bis du auf [mm]x\in (A\cup B)\cap C[/mm] kommst.

>  [mm]x\in A\cap[/mm] C und [mm]x\in B\cap[/mm] C
>  
> Ist das so dann richtig?

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de