www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Austauschprozesse
Austauschprozesse < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Austauschprozesse: Tipp zu Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 14:08 Di 28.03.2017
Autor: Lisa97

Aufgabe
Von einem Prozess ist das nebenstehende Zustandsdiagramm bekannt.
a) Bestimmen sie die Übergangsmatrix.
b) Bestimmen die einen Fixvektor.
c) Bei diesem Prozess sind 100 Individuen vorhanden, die zu Beginn alle in A sind. Bestimmen sie die langfristige Entwicklung.

Hallo.
Die Übergangsmatrix habe ich richtig.
   0,3  0,1  0,2
P= 0,4  0,9  0,5
   0,3  0,0  0,3

Ich komme bei der b) nicht auf die richtige Lösung. Kann mir jemand vielleicht das Lineare Gleichungssystem in Teilschritten ausrechnen ?
Vielen Dank schonmal im voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Austauschprozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Di 28.03.2017
Autor: angela.h.b.


> Von einem Prozess ist das nebenstehende Zustandsdiagramm
> bekannt.
> a) Bestimmen sie die Übergangsmatrix.
>  b) Bestimmen die einen Fixvektor.
>  c) Bei diesem Prozess sind 100 Individuen vorhanden, die
> zu Beginn alle in A sind. Bestimmen sie die langfristige
> Entwicklung.
>  Hallo.
>  Die Übergangsmatrix habe ich richtig.
>     0,3  0,1  0,2
>  P= 0,4  0,9  0,5
>     0,3  0,0  0,3
>  
> Ich komme bei der b) nicht auf die richtige Lösung. Kann
> mir jemand vielleicht das Lineare Gleichungssystem in
> Teilschritten ausrechnen ?

Hallo,

[willkommenmr].

Um einen Fixvektor zu finden, mußt Du das LGS

[mm] P\vec{x}=\vec{x} [/mm] lösen,

also [mm] \pmat{0.3&0.1&0.2\\0.4&0.9&0.5\\0.3&0.0&0.3}*\vektor{x\\y\\z}=\vektor{x\\y\\z} [/mm]

[mm] <==>\pmat{0.3&0.1&0.2\\0.4&0.9&0.5\\0.3&0.0&0.3}*\vektor{x\\y\\z}-\vektor{x\\y\\z}=\vektor{0\\0\\0} [/mm]

<==> [mm] \pmat{0.3&0.1&0.2\\0.4&0.9&0.5\\0.3&0.0&0.3}*\vektor{x\\y\\z}- \pmat{1&0&0\\0&1&0\\0&0&1}\vektor{x\\y\\z}=\vektor{0\\0\\0} [/mm]

<==> [mm] \pmat{-0.7&0.1&0.2\\0.4&-0.1&0.5\\0.3&0.0&-0.7}*\vektor{x\\y\\z}=\vektor{0\\0\\0} [/mm]

Bist Du auch zu diesem LGS gekommen?
Was hast Du dann getan? Was ast Du bekommen? Wo gab es ein Problem?
Uns interessieren Deine Lösungsversuche, denn oft kann man daran sehen, wo es hakt - und man kann Dir leichter passend zur Dir bekannten Vorgehensweise weiterhelfen.

Wenn ich die Koeffizientenmatrix

[mm] \pmat{-0.7&0.1&0.2&|&0\\0.4&-0.1&0.5&|&0\\0.3&0.0&-0.7&|&0} [/mm]

in Dreiecksform bringe,
erhalte ich

[mm] \pmat{-7&1&2&|&0\\0&-3&43&|&0\\0&0&0&|&0}. [/mm]

Die vorletzte Zeile liefert

3y=43z, also [mm] y=\bruch{43}{3}z, [/mm]

die erste 7x=y+2z , also [mm] 7x=\bruch{43}{3}z+2z=\bruch{49}{3}z, [/mm]
also
[mm] x=\bruch{7}{3}z. [/mm]

Alle Vektoren der Gestalt [mm] \vektor{\bruch{7}{3}z\\\bruch{43}{3}z\\z} [/mm] lösen das LGS.

Also etwa der Vektor [mm] \vektor{7\\43\\3}. [/mm]
Damit ist ein Fixvektor gefunden. Es gibt viele andere.

LG Angela








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de