www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Auswahlaxiom
Auswahlaxiom < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auswahlaxiom: surjektive Abb.
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 10.03.2012
Autor: mikexx

Aufgabe
Zeigen Sie die Äquivalenz der beiden folgenden Formulierungen des Auswahlaxioms:

(1) Sei [mm] $(M_i)_{i\in I}$ [/mm] ein Mengensystem mit [mm] $M_i\neq\emptyset~\forall~i\in [/mm] I$. Dann existiert irgendeine Funktion [mm] $\zeta\colon I\to\bigcup_{i\in I}M_i$ [/mm] mit [mm] $\zeta(i)\in M_i~\forall~i\in [/mm] I$.

(2) Jede surjektive Abbildung [mm] $f\colon A\to [/mm] B$ ist eine Retraktion, d.h. es existiert eine Abbildung [mm] $g\colon B\to [/mm] A$ mit [mm] $f\circ g=id_B$. [/mm]




[mm] $(1)\Longrightarrow [/mm] (2)$:

Also ist [mm] $f\colon A\to [/mm] B$ surjektiv, hat jedes Element in B mindestens ein Urbild in A. Da es eine Auswahlfunktion gibt, die jedem Element aus B ein Element aus A zuordnet, wähle ich als Bild eines Elements aus B gerade eines der Elemente aus A, das Urbild desjenigen Elements aus B ist.

Ich wähle also EIN Element aus A aus.


Kann man das so sagen??

Oder wie könnte man es schöner (formaler) aufschreiben?


[mm] $(1)\Longleftarrow [/mm] (2)$:

Hier weiß ich nicht wirklich weiter, ein Tipp wäre klasse.


        
Bezug
Auswahlaxiom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 11.03.2012
Autor: tobit09

Hallo mikexx,

> [mm](1)\Longrightarrow (2)[/mm]:
>  
> Also ist [mm]f\colon A\to B[/mm] surjektiv, hat jedes Element in B
> mindestens ein Urbild in A.
> Da es eine Auswahlfunktion gibt, die jedem Element aus B
> ein Element Urbild aus A zuordnet,
> wähle ich als Bild eines Elements aus B gerade eines der
> Elemente aus A, das Urbild desjenigen Elements aus B ist.
>  
> Ich wähle also EIN Element aus A aus.
>  
>
> Kann man das so sagen??

Du hast auf jeden Fall die richtige Idee. MIR wäre es tatsächlich ein bisschen zu ungenau formuliert.

> Oder wie könnte man es schöner (formaler) aufschreiben?

Schreibe explizit hin, auf welche Mengen $I$ und [mm] $M_i$ [/mm] du (1) anwenden möchtest. Schreibe dann hin, was dir (1) liefert. Dann kannst du die gesuchte Abbildung g explizit angeben.

> [mm](1)\Longleftarrow (2)[/mm]:
>  
> Hier weiß ich nicht wirklich weiter, ein Tipp wäre
> klasse.

Gegeben die Situation in (1) betrachte [mm] $A=\{(i,m)|i\in I,m\in M_i\}$, [/mm] $B=I$ und [mm] $f\colon A\to B,\; (i,m)\mapsto [/mm] i$ (die Projektion auf die erste Komponente).

Ich belasse es erstmal bei diesen groben Hinweisen. Wenn du nicht weiter kommst, einfach nachfragen!

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de