www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Automorphismus
Automorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mo 08.01.2007
Autor: darwin

Aufgabe
Man zeige, dass die Abbildung f: $ [mm] \IZ [/mm] $ + $ [mm] \IZ \wurzel{k} \to \IZ [/mm] $ + $ [mm] \IZ \wurzel{k} [/mm] $ mit
f $ [mm] \left( a+b\wurzel{k} \right) [/mm] $ = $ [mm] a-b\wurzel{k} [/mm] $
ein Automorphismus ist, falls k keine Quadratzahl ist.

Hallo zusammen.

Ich vermisse in der Aufgabenstellung die Gruppen. Ist für ein Automorphismus nicht wenigstens eine Gruppe erforderlich? Oder kann ich mir die Operation aus der Abbildunf herleiten? Und was macht es für einen Unterschied, wenn k doch eine Quadratzahl ist?

Danke im Voraus

        
Bezug
Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Mo 08.01.2007
Autor: schachuzipus

Hallo

Nun, die Abb. f geht ja von [mm] \IZ [/mm] + [mm] \IZ\wurzel{k} [/mm] nach [mm] \IZ [/mm] + [mm] \IZ\wurzel{k} [/mm]

Also sind als Gruppen wohl [mm] \left(\IZ + \IZ\wurzel{k} , +\right) [/mm] gemeint.

Gruß

schachuzipus

Bezug
                
Bezug
Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 09.01.2007
Autor: darwin

Danke erstmal.

Ich glaube aber, dass es sogar ein Ring [mm] \left( \IZ + \IZ\wurzel{k},+,* \right) [/mm] ist. Aber weiter komme ich dadurch auch nicht. Das muss irgedwie mit nem -k zusammenhängen.

Kann mir bitte jemand sagen, wie ich zeige, dass es sich um einen Automorphismus handelt.

Bezug
                        
Bezug
Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Di 09.01.2007
Autor: schachuzipus

Hallo

mal ne Idee:

Wenn f ein Automorphismus sein soll, muss f bijektiv sein.

Wenn man die Injektivität untersucht und sich a und b [mm] \in\IZ+\IZ\wurzel{k} [/mm] hernimmt,
etwa [mm] a=a_1+b_1\wurzel{k} [/mm] und [mm] b=a_2+b_2\wurzel{k} [/mm] mit f(a)=f(b)

also [mm] a_1-b_1\wurzel{k}=a_2-b_2\wurzel{k} [/mm]

[mm] \Rightarrow a_1-b_1\wurzel{k}-a_2-b_2\wurzel{k}=0 [/mm]
[mm] \Rightarrow (a_1-a_2)+(b_2-b_1)\wurzel{k}=0 [/mm]

Nun folgt, da k keine Quadratzahl ist, dass [mm] a_1-a_2\ne(b_2-b_1)\wurzel{k} [/mm] ist, denn [mm] (b_2-b_1)\wurzel{k} \not\in\IZ, [/mm] also [mm] a_1-a_2=0 [/mm] und [mm] b_2-b_1=0 [/mm]

[mm] \Rightarrow [/mm] f injektiv

(Wenn k eine Quadratzahl wäre, könnte es passieren, dass [mm] a_1-a_2=-(b_2-b_1)\wurzel{k} [/mm] ist, und f wäre nicht mehr injektiv


Bleibt dann noch die Surjektivität zu checken


Gruß

schachuzipus

Bezug
                        
Bezug
Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Di 09.01.2007
Autor: angela.h.b.


> Kann mir bitte jemand sagen, wie ich zeige, dass es sich um
> einen Automorphismus handelt.

Hallo,

ergänzend zu schachuzipus Antwort:

natürlich mußt Du zunächst zeigen, daß man es hier mit einem Homomorphismus zu tun hat, denn mitnichten ist jede bijektive Abbildung ein solcher.

Du erwähntest ja selber in einem vorhergehenden Post, daß man es hier mit einem Ring zu tun hat - von daher nur zur Sicherheit:
Du mußt zeigen, daß für alle x,y [mm] \in \IZ [/mm] + [mm] \IZ \wurzel{k} [/mm] gilt:

f(x+y)=f(x)+f(y)   und f(xy)=f(x)f(y)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de