www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Autonome DGL
Autonome DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Autonome DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 04.07.2011
Autor: Snarfu

Aufgabe
Löse die autonome DGL [mm] $y''(t)=\frac{y'^2(t)+1}{y(t)}$ [/mm]

Hallo Forum,

ich komme mit der Lösung der obigen DGL nicht weiter. Soweit war meine Idee das Standardverfahren zur Lösung autonomer DGL zu verwenden, also substitution $y'(t)=p(y), y''(t)=p'(y)p(y)$ und dann die Variabeln zu trennen. Leider funktioniert das in diesem Fall nicht und ich komme auf
[mm] $p'=\frac{p^2+1}{yp}$ [/mm]
und von dort nicht mehr weiter.


Weiß jemand was zu tun ist? Vielen Dank für Hilfe schon mal.

        
Bezug
Autonome DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 04.07.2011
Autor: MathePower

Hallo Snarfu,

> Löse die autonome DGL [mm]y''(t)=\frac{y'^2(t)+1}{y(t)}[/mm]
>  Hallo Forum,
>  
> ich komme mit der Lösung der obigen DGL nicht weiter.
> Soweit war meine Idee das Standardverfahren zur Lösung
> autonomer DGL zu verwenden, also substitution [mm]y'(t)=p(y), y''(t)=p'(y)p(y)[/mm]
> und dann die Variabeln zu trennen. Leider funktioniert das
> in diesem Fall nicht und ich komme auf
> [mm]p'=\frac{p^2+1}{yp}[/mm]
> und von dort nicht mehr weiter.
>  
>
> Weiß jemand was zu tun ist? Vielen Dank für Hilfe schon
> mal.


Wende jetzt das Verfahren der Trennung der Variablen an.


Gruss
MathePower

Bezug
                
Bezug
Autonome DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Di 05.07.2011
Autor: Snarfu

>Wende jetzt das Verfahren der Trennung der Variablen an.

ok: TdV ergibt: [mm] $p=\pm (y^2*exp(2*c_1-1)^\frac{1}{2}$ [/mm]

Rücksubstitution, integrieren und umstellen ergibt:

[mm] $y=\pm\frac{1}{2}*(1+exp(2*c_1*(t+c_2))*(c_1)^{-1}*exp(-c_1*(t+c_2))$ [/mm]

nach mehrfacher umdefinition der integrationskonstanten [mm] $c_1$ [/mm] und [mm] $c_2$ [/mm]

Jetzt hoffe ich mal das ich mich nirgendwo verrechnet habe.

Vielen Dank und Grüße

Bezug
                        
Bezug
Autonome DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Di 05.07.2011
Autor: schachuzipus

Hallo Snarfu,


> >Wende jetzt das Verfahren der Trennung der Variablen an.
>  
> ok: TdV ergibt: [mm]p=\pm (y^2*exp(2*c_1-1)^\frac{1}{2}[/mm]

Ah, das sieht komisch aus, bevor du nach [mm]p[/mm] auflöst, benenne die Konstante [mm]\exp(c_1)[/mm] um!

Du hast ja [mm]\ln(\sqrt{p^2+1})=\ln(|y|)+c_1[/mm]

Damit [mm]\sqrt{p^2+1}=e^{\ln(|y|)+c_1}=e^{\ln(|y|)}\cdot{}e^{c_1}=c_2\cdot{}|y|=C\cdot{}y[/mm]

Also [mm]p=\pm\sqrt{\hat cy^2-1}[/mm], wobei [mm]\hat c=C^2[/mm] ist ...

>  
> Rücksubstitution, integrieren und umstellen ergibt:
>  
> [mm]y=\pm\frac{1}{2}*(1+exp(2*c_1*(t+c_2))*(c_1)^{-1}*exp(-c_1*(t+c_2))[/mm]

Das musst du wohl nochmal rechnen, da ist durch diese komische Wahl der Konstanten wohl etwas schiefgelaufen.

Maple spuck etwas ziemlich anderes aus ...

>  
> nach mehrfacher umdefinition der integrationskonstanten [mm]c_1[/mm]
> und [mm]c_2[/mm]
>  
> Jetzt hoffe ich mal das ich mich nirgendwo verrechnet
> habe.

Wie sollen wir das genau sagen, wenn du uns deine Rechnung vorenthältst?

Wir können dir ja schlecht über die Schulter auf dein Schmierblatt schauen ...

Ich habe jedenfalls keine gesteigerte Lust, die ganze Rücksubstitution usw. selber zu berechnen.

Poste deine Rechnung und wir können uns die anschauen, aber uns das (nochmal) rechnen zu lassen, kann ja wohl kaum Sinn der Sache sein und ist völlig unnütze Zeitverschwendung ...

Also lass uns teilhaben an deinen Rechnungen ;-)

>  
> Vielen Dank und Grüße

Gruß

schachuzipus


Bezug
                                
Bezug
Autonome DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Di 05.07.2011
Autor: Snarfu

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,
Danke für die Antwort, es war gestern, wie man an der Zeit des posts sieht, schon ziemlich spät und ich hatte keine Zeit mehr alles abzutippen, entschuldigung dafür bitte.

Also:
$ p=\pm\sqrt{\hat cy^2-1} $
Das ist im Prinzip was ich auch habe nur eben mit einer anderen Konstante und eine Klammer fehlte außerdem noch :(. Von hier nun weiter mit deiner Konstante:

Rücksubsitution: $\frac{dy}{dt}=\pm\sqrt{\hat cy^2-1}

$\pm\int{\frac{1}{\sqrt{\hat cy^2-1}}dy}=\int{dt}$
$\pm \ln(\sqrt{\hat c}y+\sqrt{y^2 \hat c-1})\frac{1}{\sqrt{\hat c}}=t+\tilde c$
$\sqrt{\hat c}y+\sqrt{y^2 \hat c-1}=\pm e^{(t+\tilde c)\sqrt{\hat c}}$
$\sqrt{y^2 \hat c-1}=\pm e^{(t+\tilde c)\sqrt{\hat c}}-\sqrt{\hat c}y$
$y^2 \hat c-1=(e^{(t+\tilde c)\sqrt{\hat c}})^2 \pm 2\sqrt{\hat c}e^{(t+\tilde c)\sqrt{\hat c}}y+\hat c y^2$

c = \sqrt{\hat c}

$y=\frac{-1-e^{2c(t+\tilde c)}}{\pm 2ce^{c(t+\tilde c)}$

Also: $y=\pm\frac{1}{2}(1+e^{2c(t+\tilde c)})c^{-1}e^{-c(t+\tilde c)}

Vielen Dank fürs drübergucken, was kommt den bei Maple raus?

Grüße!


Bezug
                                        
Bezug
Autonome DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 05.07.2011
Autor: MathePower

Hallo Snarfu,

> Hallo,
> Danke für die Antwort, es war gestern, wie man an der Zeit
> des posts sieht, schon ziemlich spät und ich hatte keine
> Zeit mehr alles abzutippen, entschuldigung dafür bitte.
>
> Also:
>  [mm]p=\pm\sqrt{\hat cy^2-1}[/mm]
>  Das ist im Prinzip was ich auch
> habe nur eben mit einer anderen Konstante und eine Klammer
> fehlte außerdem noch :(. Von hier nun weiter mit deiner
> Konstante:
>  
> Rücksubsitution: [mm]$\frac{dy}{dt}=\pm\sqrt{\hat cy^2-1}[/mm]
>  
> [mm]\pm\int{\frac{1}{\sqrt{\hat cy^2-1}}dy}=\int{dt}[/mm]
>  [mm]\pm \ln(\sqrt{\hat c}y+\sqrt{y^2 \hat c-1})\frac{1}{\sqrt{\hat c}}=t+\tilde c[/mm]
>  
> [mm]\sqrt{\hat c}y+\sqrt{y^2 \hat c-1}=\pm e^{(t+\tilde c)\sqrt{\hat c}}[/mm]
>  
> [mm]\sqrt{y^2 \hat c-1}=\pm e^{(t+\tilde c)\sqrt{\hat c}}-\sqrt{\hat c}y[/mm]
>  
> [mm]y^2 \hat c-1=(e^{(t+\tilde c)\sqrt{\hat c}})^2 \pm 2\sqrt{\hat c}e^{(t+\tilde c)\sqrt{\hat c}}y+\hat c y^2[/mm]
>  
> c = [mm]\sqrt{\hat c}[/mm]
>  
> [mm]y=\frac{-1-e^{2c(t+\tilde c)}}{\pm 2ce^{c(t+\tilde c)}[/mm]
>  
> Also: [mm]$y=\pm\frac{1}{2}(1+e^{2c(t+\tilde c)})c^{-1}e^{-c(t+\tilde c)}[/mm]


Das stimmt soweit. [ok]

Das kannst Du aber noch anders schreiben,
wenn Du das ausmultiplizierst.


>  
> Vielen Dank fürs drübergucken, was kommt den bei Maple
> raus?
>  
> Grüße!
>  

Gruss
MathePower

Bezug
                                                
Bezug
Autonome DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 05.07.2011
Autor: Snarfu

Danke für die Antwort,

ich kann noch

[mm] $y=\pm\frac{1}{2c}(e^{-c(t+\tilde c)}+e^{c(t+\tilde c)}) [/mm] $

draus machen aber viel schöner schaut das auch nicht aus, oder?

Grüße

Bezug
                                                        
Bezug
Autonome DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Di 05.07.2011
Autor: MathePower

Hallo Snarfu,

> Danke für die Antwort,
>  
> ich kann noch
>
> [mm]y=\pm\frac{1}{2c}(e^{-c(t+\tilde c)}+e^{c(t+\tilde c)})[/mm]
>  
> draus machen aber viel schöner schaut das auch nicht aus,
> oder?


Schöner wird's, wenn Du dies Definition verwendest:

[mm]\cosh\left(u\right)=\bruch{e^{u}+e^{-u}}{2}[/mm]


>  
> Grüße


Gruss
MathePower

Bezug
                                                                
Bezug
Autonome DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Di 05.07.2011
Autor: Snarfu

Oh, prima, dann sieht

[mm] $y=\pm \frac{1}{c_1}cosh(c_1(t+c_2))$ [/mm]

natürlich schöner aus, vielen Dank nochmal!

Bezug
                                        
Bezug
Autonome DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 05.07.2011
Autor: schachuzipus

Hallo nochmal,

die Lösung von Maple sieht monströs aus ;-)

[Dateianhang nicht öffentlich]

Gruß

schachuzipus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                
Bezug
Autonome DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Di 05.07.2011
Autor: Snarfu

Hu, schaut wirklich nicht hübsch aus aber mit ein wenig zusammenfassen und redefinition von [mm] $c_1$ [/mm] als [mm] $\frac{1}{c_1}$ [/mm] steht da das gleiche.

Das Maple hier nicht von sich aus vereinfacht wundert mich.

Danke nochmal und Gute Nacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de