www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - B(M,IR) separabel <=> M endl.
B(M,IR) separabel <=> M endl. < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

B(M,IR) separabel <=> M endl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Mo 07.11.2011
Autor: Lippel

Aufgabe
Der Raum der beschränkten Funktionen [mm] $B(M,\IR) [/mm] = [mm] \{f:M\to\IR\;|\; \textnormal{f beschränkt auf}\:M\}$, [/mm] versehen mit der Supremumsnorm, ist genau dann separabel, wenn [mm] $M\;$ [/mm] endlich ist.

Hallo,

ich würde gerne wissen, ob meine Lösung korrekt ist.

[mm] "$\Rightarrow$" [/mm]
Angenommen [mm] $M\;$ [/mm] ist nicht endlich.
Sei $f [mm] \in B(M,\IR)$, [/mm] dann kann man [mm] $f\;$ [/mm] auffassen als Tupel [mm] $(x_i)_{i \in M}, x_i \in \IR$, [/mm] mithilfe der natürlichen, isometrischen Bijektion [mm] $(B(M,\IR),||\cdot||_{\infty}) \to (\{x \in \produkt_{i \in M} \IR\;|\; ||x||_{\infty} < \infty\}, ||\cdot||_{\infty})$ [/mm]
Sei nun [mm] $(x^{(n)})$ [/mm] eine Folge in [mm] $B(M,\IR)$ [/mm] mit [mm] \overline{\{(x^{(n)}\;|\;n \in \IN\}} [/mm] = [mm] B(M,\IR)$. [/mm]
Wir fassen [mm] $(x^{(n)}_i)$ [/mm] auf als Tupel in [mm] $\produkt_{i \in M} \IR$. [/mm]
Nun betrachten wir [mm] $y=(y_i)$ [/mm] definiert durch:
[mm] $y_i=\begin{cases}x^{(i)}_i+1 &\; \text{falls} |x^{(i)}_i| \leq 1 \\ 0 &\; \text{sonst} \end{cases}$ [/mm]
Es ist dann [mm] $y_i [/mm] < 2$ für alle $i [mm] \in [/mm] M$ und somit [mm] $||y||_{\infty}<2$, [/mm] also $y [mm] \in B(M,\IR)$, [/mm] aber [mm] $||y-x^{(n)}||_{\infty} \geq |y_n-x^{(n)}_n| \geq [/mm] 1$ für alle $n [mm] \in [/mm] M$. Dies steht im Widerspruch zur Dichtheit von [mm] $(x^{(n)})$ [/mm] in [mm] $B(M,\IR)$. [/mm] M muss also endlich sein.

[mm] "$\Leftarrow$" [/mm]
Ist M endlich, so ist [mm] $B(M,\IR)$ [/mm] isometrisch isomorph zu [mm] $\IR^n$ [/mm] mit $n = [mm] |M|\;$. [/mm] Es ist [mm] $\IQ^n$ [/mm] abzählbar und dicht in [mm] $\IR^n$, [/mm] also ist [mm] $B(M,\IR)$ [/mm] separabel.

Passt das so?

Vielen Dank für eure Hilfe, viele Grüße,
Lippel

        
Bezug
B(M,IR) separabel <=> M endl.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 07.11.2011
Autor: fred97


> Der Raum der beschränkten Funktionen [mm]B(M,\IR) = \{f:M\to\IR\;|\; \textnormal{f beschränkt auf}\:M\}[/mm],
> versehen mit der Supremumsnorm, ist genau dann separabel,
> wenn [mm]M\;[/mm] endlich ist.
>  Hallo,
>  
> ich würde gerne wissen, ob meine Lösung korrekt ist.
>  
> "[mm]\Rightarrow[/mm]"
>  Angenommen [mm]M\;[/mm] ist nicht endlich.
>  Sei [mm]f \in B(M,\IR)[/mm], dann kann man [mm]f\;[/mm] auffassen als Tupel
> [mm](x_i)_{i \in M}, x_i \in \IR[/mm], mithilfe der natürlichen,
> isometrischen Bijektion [mm](B(M,\IR),||\cdot||_{\infty}) \to (\{x \in \produkt_{i \in M} \IR\;|\; ||x||_{\infty} < \infty\}, ||\cdot||_{\infty})[/mm]
>  
> Sei nun [mm]$(x^{(n)})$[/mm] eine Folge in [mm]$B(M,\IR)$[/mm] mit
> [mm]\overline{\{(x^{(n)}\;|\;n \in \IN\}}[/mm] = [mm]B(M,\IR)$.[/mm]
>  Wir fassen [mm](x^{(n)}_i)[/mm] auf als Tupel in [mm]\produkt_{i \in M} \IR[/mm].
>  
> Nun betrachten wir [mm]y=(y_i)[/mm] definiert durch:
>  [mm]y_i=\begin{cases}x^{(i)}_i+1 &\; \text{falls} |x^{(i)}_i| \leq 1 \\ 0 &\; \text{sonst} \end{cases}[/mm]

Das gefällt mir ganz und gar nicht ! Was soll denn [mm] x^{(i)}_i [/mm] sein ?

Das obere i in (i) stammt aus [mm] \IN [/mm] und das untere i aus M ?!?

Das passt nicht !

Gruß FRED


>  
> Es ist dann [mm]y_i < 2[/mm] für alle [mm]i \in M[/mm] und somit
> [mm]||y||_{\infty}<2[/mm], also [mm]y \in B(M,\IR)[/mm], aber
> [mm]||y-x^{(n)}||_{\infty} \geq |y_n-x^{(n)}_n| \geq 1[/mm] für
> alle [mm]n \in M[/mm]. Dies steht im Widerspruch zur Dichtheit von
> [mm](x^{(n)})[/mm] in [mm]B(M,\IR)[/mm]. M muss also endlich sein.
>  
> "[mm]\Leftarrow[/mm]"
>  Ist M endlich, so ist [mm]B(M,\IR)[/mm] isometrisch isomorph zu
> [mm]\IR^n[/mm] mit [mm]n = |M|\;[/mm]. Es ist [mm]\IQ^n[/mm] abzählbar und dicht in
> [mm]\IR^n[/mm], also ist [mm]B(M,\IR)[/mm] separabel.
>  
> Passt das so?
>  
> Vielen Dank für eure Hilfe, viele Grüße,
>  Lippel


Bezug
                
Bezug
B(M,IR) separabel <=> M endl.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:29 Mo 07.11.2011
Autor: Lippel

Hallo, vielen Dank für die Antwort.

> > Der Raum der beschränkten Funktionen [mm]B(M,\IR) = \{f:M\to\IR\;|\; \textnormal{f beschränkt auf}\:M\}[/mm],
> > versehen mit der Supremumsnorm, ist genau dann separabel,
> > wenn [mm]M\;[/mm] endlich ist.
>  >  Hallo,
>  >  
> > ich würde gerne wissen, ob meine Lösung korrekt ist.
>  >  
> > "[mm]\Rightarrow[/mm]"
>  >  Angenommen [mm]M\;[/mm] ist nicht endlich.
>  >  Sei [mm]f \in B(M,\IR)[/mm], dann kann man [mm]f\;[/mm] auffassen als
> Tupel
> > [mm](x_i)_{i \in M}, x_i \in \IR[/mm], mithilfe der natürlichen,
> > isometrischen Bijektion [mm](B(M,\IR),||\cdot||_{\infty}) \to (\{x \in \produkt_{i \in M} \IR\;|\; ||x||_{\infty} < \infty\}, ||\cdot||_{\infty})[/mm]
>  
> >  

> > Sei nun [mm]$(x^{(n)})$[/mm] eine Folge in [mm]$B(M,\IR)$[/mm] mit
> > [mm]\overline{\{(x^{(n)}\;|\;n \in \IN\}}[/mm] = [mm]B(M,\IR)$.[/mm]
>  >  Wir fassen [mm](x^{(n)}_i)[/mm] auf als Tupel in [mm]\produkt_{i \in M} \IR[/mm].
>  
> >  

> > Nun betrachten wir [mm]y=(y_i)[/mm] definiert durch:
>  >  [mm]y_i=\begin{cases}x^{(i)}_i+1 &\; \text{falls} |x^{(i)}_i| \leq 1 \\ 0 &\; \text{sonst} \end{cases}[/mm]
>  
> Das gefällt mir ganz und gar nicht ! Was soll denn
> [mm]x^{(i)}_i[/mm] sein ?
>  
> Das obere i in (i) stammt aus [mm]\IN[/mm] und das untere i aus M
> ?!?
>
> Das passt nicht !
>  
> Gruß FRED

Ich versuche nochmal meinen Ansatz zu retten.
Da [mm] $M\;$ [/mm] unendlich ist gibt es eine injektive Abblidung [mm] $\varphi: \IN \to [/mm] M$

Nun definiere ich [mm] $y=(y_m)_{m \in M}$ [/mm] folgendermaßen:
[mm]y_m=\begin{cases}x^{\varphi^{-1}(m)}_{m}+1 &\; \text{falls}\; \varphi^{-1}(m) \not= \emptyset\; \text{und}\;|x^{\varphi^{-1}(m)}_m| \leq 1 \\ 0 &\; \text{sonst} \end{cases}[/mm]
Liegt $m [mm] \in [/mm] M$ im Bild von [mm] $\varphi$, [/mm] so enthält [mm] $\varphi^{-1}(m)$ [/mm] aufgrund der Injektivität von [mm] $\varphi$ [/mm] nur ein Element. Da ist für die Definition von $y [mm] \;$ [/mm] wichtig.

Es ist dann [mm]y_m < 2[/mm] für alle [mm]m \in M[/mm] und somit
[mm]||y||_{\infty}<2[/mm], also [mm]y \in B(M,\IR)[/mm], aber
[mm]||y-x^{(n)}||_{\infty} \geq |y_{\varphi(n)}-x^{(n)}_{\varphi(n)}| \geq 1[/mm] für $n [mm] \in \IN$ [/mm]
Nun haben wir also einen Widerspruch zur Dichtheit von [mm](x^{(n)})[/mm] in [mm]B(M,\IR)[/mm]. M muss also endlich sein.

Passt das jetzt? Und wenn nicht, meint ihr dass man mit meinem Ansatz überhaupt zum Ziel kommt?

"[mm]\Leftarrow[/mm]"
Ist M endlich, so ist [mm]B(M,\IR)[/mm] isometrisch isomorph zu
[mm]\IR^n[/mm] mit [mm]n = |M|\;[/mm]. Es ist [mm]\IQ^n[/mm] abzählbar und dicht in [mm]\IR^n[/mm], also ist [mm]B(M,\IR)[/mm] separabel.  

Stimmt denn die Rückrichtung?

Danke für eure Hilfe!

LG Lippel  


Bezug
                        
Bezug
B(M,IR) separabel <=> M endl.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 09.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de