www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Bahnen bei zykl. Permutationen
Bahnen bei zykl. Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnen bei zykl. Permutationen: Idee
Status: (Frage) überfällig Status 
Datum: 20:15 Di 22.05.2007
Autor: elisabeth0

Aufgabe
Es sei [mm] n\in [/mm] N, und [mm] a=a_1*a_2*..a_t \in S_n [/mm] ein Produkt von zyklischen Permutationen, diese seien zueinander "fremd" in dem Sinne, dass [mm] a_i [/mm] und [mm] a_j [/mm] keine gemeinsame Ziffer enthalten. Die von a erzeugte Untergruppe
<a> = [mm] \{a^{k}|k \in \IZ\} [/mm] operiert auf X={1,...,n}. Welches sind die Bahnen dieser Aktion?
Kehren Sie diese Beobachtung um. Ist a [mm] \in S_3, [/mm] so lehren die Bahnen der Aktion von <a> auf X, dass und wie man a als Produkt zueinander fremder zyklischer Permutationen schreiben kann. Inwieweit ist diese Zerlegung eindeutig?

Hi,
ich habe mit dieser Aufgabe noch FOrmulierungsschwierigkeiten.
Also: Diese elementfremden Permutationen ergeben ja multipliziert keine große Veränderung, da keine auf das andere zeigt, ist zB (1 3) * (4 2) einfach (1 3)(4 2).
Wenn ich dies nun auf X anwende, zB auf 1, so erhalte ich ja 3, und dann wieder 1, oder? Bei 2 würde es auf 4 gehen, und dann wieder zurück?

Also im Prinzip enthält die Bahn von x den Zyklus, bei dem x "erwischt" wird?
Und umgekehrt kann ich einfach schreiben, dass man bei den Bahnen direkt die Zyklen ablesen kann. Eindeutig ist das, weil die Zyklenmultiplikation kommutativ? ist, solange man eben "fremd" bleibt - richtig?

Aber wie soll ich das schreiben, so dass das auch mein Korrekteur akzeptiert?

Danke für die Hilfe
Lizzy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bahnen bei zykl. Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 23.05.2007
Autor: statler

Gute Morgen Elisabeth!

> Es sei [mm]n\in[/mm] N, und [mm]a=a_1*a_2*..a_t \in S_n[/mm] ein Produkt von
> zyklischen Permutationen, diese seien zueinander "fremd" in
> dem Sinne, dass [mm]a_i[/mm] und [mm]a_j[/mm] keine gemeinsame Ziffer
> enthalten. Die von a erzeugte Untergruppe
> <a> = [mm]\{a^{k}|k \in \IZ\}[/mm] operiert auf X={1,...,n}. Welches
> sind die Bahnen dieser Aktion?
>  Kehren Sie diese Beobachtung um. Ist a [mm]\in S_3,[/mm] so lehren
> die Bahnen der Aktion von <a> auf X, dass und wie man a als
> Produkt zueinander fremder zyklischer Permutationen
> schreiben kann. Inwieweit ist diese Zerlegung eindeutig?

> Also: Diese elementfremden Permutationen ergeben ja
> multipliziert keine große Veränderung, da keine auf das
> andere zeigt, ist zB (1 3) * (4 2) einfach (1 3)(4 2).
> Wenn ich dies nun auf X anwende, zB auf 1, so erhalte ich
> ja 3, und dann wieder 1, oder? Bei 2 würde es auf 4 gehen,
> und dann wieder zurück?

Es gibt auch längee zyklische Permutationen, z. B. (1 2 3 4 5) oder so, je nach X.

> Also im Prinzip enthält die Bahn von x den Zyklus, bei dem
> x "erwischt" wird?

Genau. Die Bahnen sind die Ziffern, die in den einzelnen Zykeln stehen.

>  Und umgekehrt kann ich einfach schreiben, dass man bei den
> Bahnen direkt die Zyklen ablesen kann. Eindeutig ist das,
> weil die Zyklenmultiplikation kommutativ? ist, solange man
> eben "fremd" bleibt - richtig?

Hm, wenn ich weiß, daß {1, 2, 3} eine Bahn von a ist, dann könnte a doch = (1 2 3) oder = (1 3 2) sein. Die sind aber verschieden. Klar ist, daß es nur bis auf die Reihenfolge eindeutig sein kann, weil elementfremde Zykeln kommutieren.

> Aber wie soll ich das schreiben, so dass das auch mein
> Korrekteur akzeptiert?

Indem du einfach alles richtig machst, dann hat er keine Chance!

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Bahnen bei zykl. Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Do 24.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de