www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Bahnkurve
Bahnkurve < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnkurve: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 11.11.2014
Autor: Jonas123

Aufgabe
Betrachten Sie eine Schraubenlinie, die gegeben ist durch die folgende Raumkurve:
r(t) = [mm] Rcos(t)e_{x} [/mm] + [mm] Rsin(t)e_{y} [/mm] + [mm] bte_{z} [/mm]

a) Berechnen Sie die Bogenlänge der Raumkurve.

b) Bestimmen Sie das begleitende Dreibein der Bahnkurve.

c) Bestimmen Sie die Krümmung und die Torsion der Bahnkurve.

d) Wie ändern sich Krümmung und Torsion, wenn man die Schraubenlinie auseinanderzieht, d.h. ein größeres b wählt?

Zu a) ich weiß, dass ich  die Bogenlänge mit der Formel

l= [mm] \integral_{a}^{b}{\wurzel{1+(f(x)')^2} dx} [/mm]

berechnen kann. Hierzu muss ich r(t) ableiten, jedoch hier bin ich mir schon nicht mehr sicher wie ich das machen soll.
Ich glaube, dass es so funktioniert: [mm] r‘(t)=R*(-sin(t))*e_{x} [/mm] +R*cos(t)* [mm] e_{y} +b*1*e_{z} [/mm]
Bin mir aber nicht sicher.

Diese Ableitung muss ich dann in die Funktion für die Bogenlänge einsetzten, das Integral auflösen und fertig.

zu b) um das Dreibein zu bestimmen muss ich den
Tanentenvektor [mm] t=\bruch{r'}{|r'|} [/mm]
Normalenvektor [mm] n=\bruch{r''}{|r''|} [/mm]
Binormalenvektor b=t [mm] \times [/mm] n

sollte ich hinbekommen, wenn ich weiß ob meine Ableitung richtig ist, nochmal ableiten sollte kein Problem sein.

zu c) für die Krümmung muss ich Kappa ausrechen.
[mm] \kappa [/mm] = |{r''}|

Torsion: |Ableitung von Bionormalenvektor|

zu d) bei einer größeren Schraubenlinie wird die Krümmung kleiner.

Das wären meine Ideen/Lösungsstrategien zu der Aufgabe. Prinzipiell hänge ich an der Ableitung, die wahrscheinlich nicht richtig sein wird. Der Rest sollte klar sein und hoffentlich auch richtig, jedoch wäre es nett wenn du einmal darüberschauen könntest. In mancher Literatur steht dass man manchmal umparametrisieren muss, sollte jedoch hier nicht nötig sein.

Ich sage schon mal danke an alle die sich Zeit nehmen mir zu helfen.

Jonas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bahnkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Di 11.11.2014
Autor: MathePower

Hallo Jonas123,


[willkommenmr]


> Betrachten Sie eine Schraubenlinie, die gegeben ist durch
> die folgende Raumkurve:
>  r(t) = [mm]Rcos(t)e_{x}[/mm] + [mm]Rsin(t)e_{y}[/mm] + [mm]bte_{z}[/mm]
>  
> a) Berechnen Sie die Bogenlänge der Raumkurve.
>  
> b) Bestimmen Sie das begleitende Dreibein der Bahnkurve.
>  
> c) Bestimmen Sie die Krümmung und die Torsion der
> Bahnkurve.
>  
> d) Wie ändern sich Krümmung und Torsion, wenn man die
> Schraubenlinie auseinanderzieht, d.h. ein größeres b
> wählt?
>  Zu a) ich weiß, dass ich  die Bogenlänge mit der Formel
>
> l= [mm]\integral_{a}^{b}{\wurzel{1+(f(x)')^2} dx}[/mm]
>  


Mit dieser Formel ermittelst Du die Bogenlänge eines Funktionsgraphen.


> berechnen kann. Hierzu muss ich r(t) ableiten, jedoch hier
> bin ich mir schon nicht mehr sicher wie ich das machen
> soll.


Hier benötigst Du allerdings eine andere Formel.


>  Ich glaube, dass es so funktioniert:
> [mm]r‘(t)=R*(-sin(t))*e_{x}[/mm] +R*cos(t)* [mm]e_{y} +b*1*e_{z}[/mm]
> Bin mir aber nicht sicher.
>  


Das ist richtig. [ok]

Jetzt bestimmst Du die Bogenlänge mit der Formel:

[mm]\integral_{t_{1}}^{t_{2}}{\wurzel{\dot{r\left(t\right)}\dot{r\left(t\right)}}} \ dt}[/mm]

Kurz gesagt:

Du integrierst über den Betrag der Ableitung von r nach t.



> Diese Ableitung muss ich dann in die Funktion für die
> Bogenlänge einsetzten, das Integral auflösen und fertig.
>  
> zu b) um das Dreibein zu bestimmen muss ich den
> Tanentenvektor [mm]t=\bruch{r'}{|r'|}[/mm]
>  Normalenvektor [mm]n=\bruch{r''}{|r''|}[/mm]
>  Binormalenvektor b=t [mm]\times[/mm] n
>  
> sollte ich hinbekommen, wenn ich weiß ob meine Ableitung
> richtig ist, nochmal ableiten sollte kein Problem sein.
>  
> zu c) für die Krümmung muss ich Kappa ausrechen.
> [mm]\kappa[/mm] = |{r''}|
>  
> Torsion: |Ableitung von Bionormalenvektor|
>  


Siehe dazu: []Frenetsche Formeln in Abhängigkeit von anderen Parametern.


> zu d) bei einer größeren Schraubenlinie wird die
> Krümmung kleiner.
>  
> Das wären meine Ideen/Lösungsstrategien zu der Aufgabe.
> Prinzipiell hänge ich an der Ableitung, die wahrscheinlich
> nicht richtig sein wird. Der Rest sollte klar sein und
> hoffentlich auch richtig, jedoch wäre es nett wenn du
> einmal darüberschauen könntest. In mancher Literatur
> steht dass man manchmal umparametrisieren muss, sollte
> jedoch hier nicht nötig sein.
>  
> Ich sage schon mal danke an alle die sich Zeit nehmen mir
> zu helfen.
>  
> Jonas
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
                
Bezug
Bahnkurve: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Di 11.11.2014
Autor: Jonas123

Vielen Dank für deine schnelle Hilfe, jetzt ist die Aufgabe klar und es bleibt nur noch die Rechenarbeit zu tun. Ist in diesem Fall leider sehr viel, aber nun gut.

Wünsche dir noch einen schönen Tag und bis zu meiner nächsten Frage.

Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de