www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Banach-Raum aber kein Hilbert
Banach-Raum aber kein Hilbert < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach-Raum aber kein Hilbert: Frage
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 16.06.2005
Autor: Mathemagier

Hallo zusammen!
Eine kurze Frage: Kann mir jemand ein Beispiel für einen Banach-Raum nennen, der kein Hilbert-Raum ist und es begründen? Ich denke die ganze Zeit an die "Mutter" aller Banach-Räume, den
[mm]l^{\infty}(I):=\{(x_{i})_{i \in I} : sup_{i \in I} |x_{i}|< \infty \} [/mm] mit der Sup.-Norm. Warum ist dieser aber kein Hilbert-Raum?

Liebe Grüße,
Andreas

        
Bezug
Banach-Raum aber kein Hilbert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Do 16.06.2005
Autor: Stefan

Hallo Andreas!

Eine Norm kommt ja genau dann von einem Skalarprodukt, wenn die Norm die Parallelogrammgleichung

[mm] $\Vert [/mm] x+y [mm] \Vert^2 [/mm] + [mm] \Vert [/mm] x-y [mm] \Vert^2 [/mm] = [mm] 2(\Vert [/mm] x [mm] \Vert^2 [/mm] + [mm] \Vert [/mm] y [mm] \Vert^2)$ [/mm]

erfüllt. Vielleicht fällt dir ja selber ein Paar $(x,y) [mm] \in l^{\infty}(I) \times l^{\infty}(I)$ [/mm] ein, für das die Parallelogrammgleichung nicht gilt?

Du kannst dich ja vielleicht noch mal melden, ob es dir geholfen hat, gegebenenfalls dein Gegenbeispiel angeben oder aber nachfragen. :-)

Viele Grüße
Stefan

Bezug
                
Bezug
Banach-Raum aber kein Hilbert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Do 16.06.2005
Autor: Mathemagier

Hallo Stefan!

> Vielleicht fällt dir ja selber ein Paar [mm](x,y) \in l^{\infty}(I) \times l^{\infty}(I)[/mm]
> ein, für das die Parallelogrammgleichung nicht gilt?

Jau, die Parallelogrammgleichung war der Knackpunkt, an dem es scheiterte. Hatte die ganze Zeit die Def. vom vollst. Innenproduktraum vor Augen.
Wenn man also für [mm]x \in l^{\infty}(I)[/mm] einfach den unendlich dim. Einheitsvektor [mm](0,...,0,1,0,...)[/mm] nimmt, der an i-ter Stelle die 1 hat und für y einen anderen Einheitsvektor, der an j-ter Stelle die 1 hat, dann ist in der sup-Norm [mm]||x+y||^2+||x-y||^2 = 1^2+1^2=2 \not= 4=2(1^2+1^2)=2(||x||^2+||y||^2)[/mm].
Danke nochmal für den Tipp, Stefan!

Liebe Grüße,
Andreas

Bezug
                        
Bezug
Banach-Raum aber kein Hilbert: Richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Do 16.06.2005
Autor: Stefan

Hallo Andreas!

[daumenhoch]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de