www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Sa 18.02.2006
Autor: squeezer

Aufgabe
a) Berechnen Sie eine Näherung an die positive Nullstelle der Funktion $ f(x) = [mm] x^4-5 [/mm] $ mit dem Newton Verfahren mit Startwert x = 2 indem Sie einen Iterationsschritt durchführen.

b) Zeigen Sie, dass das Newton Verfahren aus a) für jeden Startwert x > 0 konvergiert.

Hallo

also den Teil a der Aufgabe damit habe ich kein Problem ich weiss nur nicht beim Teil b was bzw wie ich das genau beweisen soll.
Ich denke mir dass ich dazu den Banachschen Fixpunktsatz verwenden muss, also weigen dass
* Die Funktion $x- [mm] \bruch{x^4-5}{4x^3}$ [/mm] eine Lipschitzkonstante 0<L<1 hat <-- Mein Erstes Problem - Also die Funktion kontrahierend ist
* Die Funktion eine Selbstabbildung ist.

->Soweit ich weiss gilt der Banachsche Fixpunktsatz ja nur für ein abgeschlossenes Intervall, aber ist x>0 abgeschlossen?


Vielen Dank für Deine/Eure Auskunft

Marc

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 18.02.2006
Autor: Christian

Hallo.

Der Banachsche Fixpunktsatz gilt allgemein in vollständigen metrischen Räumen. Dies ist insbesondere der Fall, wenn Du ein abgeschlossenes reelles Intervall hast.
Du solltest hier untersuchen, was mit Deinem Startwert passiert, wenn Du die Funktion einmal darauf anwendest... vielleicht kannst Du ja mit der Ableitung gewinnbringend abschätzen.
Dann bekommst Du heraus, daß Du auf jeden Fall ein abgeschlossenes Intervall findest, in dem für jedes [mm] $x_0$ [/mm] Dein [mm] $f(x_0)$ [/mm] anzutreffen ist.
Die Vollständigkeit Deines metrischen Raumes ist also hier kein Problem.
Dann solltest Du noch zeigen, daß dort $f_$ kontrahierend ist (auch hier kann die Ableitung helfen...).
Spiel einfach mal etwas mit den Termen herum, dann bekommt man die nötigen Eigenschaften fast geschenkt.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de