www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Berechnung von \wurzel{2}
Status: (Frage) beantwortet Status 
Datum: 16:22 Do 17.09.2009
Autor: a_la_fin

Aufgabe
Berechnung von [mm] \wurzel{2} [/mm] mit Hilfe des Banachschen Fixpunktsatzes und der Funktion [mm] f(x)=x^{2}-2 [/mm]

Hallo zusammen,

ich habe ein kleines Problem damit, dieses Beispiel zur Berechnung der Wurzel aus 2 mit Hilfe des Banachschen Fixpunktsatzes nachzuvollziehen.

Gegeben ist die Funktion [mm] f(x)=x^{2}-2. [/mm] Wir suchen eine Nullstelle von f(x), wissen aber schon, dass es 2 Nullstellen von f(x) , also 2 Fixpunkte von g(x)=f8x)+x = [mm] x^{2}-2+x [/mm] gibt [mm] \Rightarrow [/mm] wir können den Banachschen Fixpunktsatz nicht direkt anwenden.
Wenn wir aber g auf das Intervall [1,2] beschränken, dann ist auf diesem Intervall g' [mm] \ge [/mm] 3 (ja, da g'(1)=2x+1=3 ergibt), also NICHT kontrahierend.
(So weit kann ich noch sehr gut folgen :-))

Man könnte nun statt f die Funktion c*f benutzen, die für c [mm] \in \IR \{0} [/mm] die gleichen Nullstellen wie f besitzt, aber für c [mm] \in (-\bruch{1}{2}, [/mm] 0) eine kontrahierende Abbildung [mm] x\mapsto [/mm] c*f(x)+x liefert.
Das verstehe ich nicht: wenn z.B. [mm] c=-\bruch{1}{4} [/mm] dann ergibt sich für g: [mm] g(x)=-\bruch{1}{4}(x^{2}-2) [/mm] + x = [mm] -\bruch{1}{4}x^{2}+0,5+x [/mm] und für [mm] g'(x)=-\bruch{1}{2}x+1 [/mm] das ist doch aber für c [mm] \in (-\bruch{1}{2}, [/mm] 0) immer GRÖSSER als 1 und damit NICHT kontrahierend??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

lG

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Do 17.09.2009
Autor: fred97

Du betrachtest doch  $ [mm] g'(x)=-\bruch{1}{2}x+1 [/mm] $ im Intervall [1,2].


Für x [mm] \in [/mm] [1,2] gilt: g'(x)  [mm] \in [/mm] [0, 1/2]

Mach Dir mal eine Zeichnung !

FRED

Bezug
                
Bezug
Banachscher Fixpunktsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Fr 18.09.2009
Autor: a_la_fin

Hi

ach verdammt ich hab aus Versehn das c für x eingesetzt - Autsch! tut mir Leid, ich war total übermüdet... ich verspreche: das nächste Mal denk ich erst richtig (nüchtern/ausgeschlafen/unabgelenkt) nach, bevor ich so dämliche Fragen stell!!!

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de