www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Bananachsche Fixpunktsatz
Bananachsche Fixpunktsatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bananachsche Fixpunktsatz: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 14.11.2005
Autor: Quasimodo

Moin,

ich sitze hier an einer Aufgabe und weiß nicht, wie ich da rangehen soll. Vielleicht kann mir jemand einen Tip geben...

Es seien A  [mm] \in M_{n}( \IR). [/mm] Finden Sie mit Hilfe des Bananachschen Fixpunktsatzes ein  [mm] \delta [/mm] >0 ,  so dass das lineare Gleichungssytem

(E- [mm] \lambda [/mm] A) * [mm] \vec{x} [/mm] =  [mm] \vec{b} [/mm]  (E ist die Einheitsmatrix)

für | [mm] \lambda [/mm] | < [mm] \delta [/mm] stets genau eine Lösung [mm] \vec{x} [/mm] hat.

Bin für jeden Tip dankbar.

Grüße aus Hamburg

        
Bezug
Bananachsche Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Mo 14.11.2005
Autor: banachella

Hallo!

Probier's doch mal mit folgender Umformung:
[mm] $(E-\lambda [/mm] A)x=b\ [mm] \Leftrightarrow\ \lambda [/mm] Ax+b=x$.
Definiere die Funktion $f:\ [mm] \IR^n\to\IR^n,\ x\mapsto \lambda [/mm] Ax+b$...

Jetzt eine Idee? ;-)

Gruß, banachella



Bezug
                
Bezug
Bananachsche Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 14.11.2005
Autor: Quasimodo

Hallo banachella,

danke für die schnelle Antwort.
Ich habe jetzt eine Funktion f auf die ich den Fixpunktsatz anwenden kann:
f(x)=x <=> $ [mm] \lambda [/mm] Ax+b=x $ , so wie du es gemacht hast. Leider weiß ich immer noch nicht, wie ich jetzt das [mm] \delta [/mm] bestimmen soll...
Vielleicht kannst du deinen Tip etwas ausführen?

Vielen Dank und viele Grüße

Bezug
                        
Bezug
Bananachsche Fixpunktsatz: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 07:50 Mi 16.11.2005
Autor: Toellner

Hallo Quasi,

ich würde es etwas anders machen:
Ein Operator T kontrahiert (=> hat einen Fixpunkt), wenn
[mm]||T(x) - T(y)|| < k||x-y||[/mm]  gilt für alle x,y und festem k < 1.
da T = E - [mm] \lambda [/mm] A linear ist, genügt die Bedingung
[mm]||(E-\lambda A)z|| \le ||E-\lambda A||*||z|| < k ||z||[/mm]
also
[mm]||E-\lambda A|| < 1[/mm].
Jetzt hängt es davon ab, was Du für eine Norm für Matrizen definiert hast.

Gruß, Richard

Bezug
                                
Bezug
Bananachsche Fixpunktsatz: Aufgabe falsch gelesen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:42 Do 17.11.2005
Autor: Toellner

Hallo Quasi,

ich hatte die Aufgabenstellung zu flüchtig gelesen, sorry!
Nicht T = E - [mm] \lambda [/mm] A soll kontrahieren, sondern  T(x) = [mm] \lambda [/mm] Ax + b, genau wie Banachella geschrieben hat...
Dann hast Du für die Lipschitz-Konstante
[mm]||T(x) - T(y)|| = ||\lambda A(x-y)|| \le |\lambda|* ||A||* ||x-y||[/mm]
und dann ist hoffentlich alles klar,

Gruß, Richard

Bezug
        
Bezug
Bananachsche Fixpunktsatz: Hat sich erledigt...
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 16.11.2005
Autor: Toellner

Hallo Quasi,

heute morgen auf dem Weg zur Arbeit kam mir die Frage, ob das überhaupt geht:
Unabhängig von der Norm kriegts Du das Problem, dass
|1 - [mm] \lambda a_{i,i} [/mm] < 1
sein muss für alle Diagonalelemente und [mm] |\lambda [/mm] | < [mm] \delta. [/mm]
Das dürfte nicht klappen...

Gruß, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de