www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Barwert bei steigenden Raten
Barwert bei steigenden Raten < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Barwert bei steigenden Raten: Kann man das so herleiten?
Status: (Frage) überfällig Status 
Datum: 17:55 Mo 19.06.2006
Autor: Karthagoras

Aufgabe
Ausgehend von der Barwertformel (mit gleichbleibenden Raten) meiner Formelsammlung, habe ich versucht, den Barwert herzuleiten für Zahlungen bei denen die Rate nach jeder Zahlung um den Faktor g steigt.
(Weil ich wissen wollte, ob ich das kann.)
Frage: Kann man das so machen oder ist da der Wurm drin?

Ihr lieben,
angestoßen von einer anderen Frage in diesem Forum (break-even-point einer Rente)Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

, habe ich versucht die Formel für den Barwert selbst herzuleiten. Die Formel, zu der ich gekommen bin, ist in ihrer Struktur identisch mit der Formel für den Barwert bei gleichbleibender Rate.

Allerdings bin ich nicht sicher, ob das so stimmt.

Kann man das so machen?

$ B_{1n}=R*\frac1{q^{n}}*\frac{q^n-1}{q-1}=\overbrace{\left(\frac{R}{q^1}+\ldots{}+\frac{R}{q^{n}}\right)}^{\mbox{n Raten}}\right)$

$ B_{2n}=\frac{R}{g}*\frac{1}{\left(\frac{q}{g}\right)^n}*\frac{\left(\frac{q}{g}\right)^n-1}{\left(\frac{q}{g}\right)-1}=\overbrace{\left(\frac{\frac{R}{g}}{\left(\frac{q}{g}\right)^1}+\ldots{}+\frac{\frac{R}{g}}{\left(\frac{q}{g}\right)^n}\right)}^{\mbox{n Raten}}\right)$

Dabei ist g der Steigerungsfaktor der Rate.

Lieben Gruß Karthagoras

P.S. Das hatte ich ja völlig vergessen:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Barwert bei steigenden Raten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 20.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de