www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 17.02.2007
Autor: Incibus

Aufgabe
Gegeben seine die Vektoren: [mm] x_{1}=\vektor{1 \\ 2 \\ 1} x_{2}=\vektor{-1 \\ 1 \\-4 } x_{3}=\vektor{4 \\ 9 \\ 3} [/mm]

Geben sie drei unterschiedliche Basen A,B und C der Menge LH [mm] (x_{1},x_{2},x_{3}) [/mm] an.

wie würden diese Basen aussehen und wie hab ich vorzugehen?

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Sa 17.02.2007
Autor: angela.h.b.


> Gegeben seine die Vektoren: [mm]x_{1}=\vektor{1 \\ 2 \\ 1} x_{2}=\vektor{-1 \\ 1 \\-4 } x_{3}=\vektor{4 \\ 9 \\ 3}[/mm]
>  
> Geben sie drei unterschiedliche Basen A,B und C der Menge
> LH [mm](x_{1},x_{2},x_{3})[/mm] an.
>  wie würden diese Basen aussehen und wie hab ich
> vorzugehen?

Hallo,

klar ist ja schonmal, daß die drei Vektoren ein Erzeugendensystem ihrer linearen Hülle bilden.
Als nächstes solltest Du herausfinden, welche der drei Vektoren eine Basis dieser Hülle bilden. Kannst Du auf einen verzichten? Auf zwei? Sind alle drei linear unabhängig?
Wenn Du eine Basis gefunden hast, kennst Du schonmal die Dimension Deiner LH und weißt, wieviele Elemente die anderen Basen haben müssen.


Gruß v. Angela

Bezug
                
Bezug
Basen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 17.02.2007
Autor: Incibus

Also nach meiner Rechnung sind zwei der drei  Vektoren linear unabhängig. das bedeutet doch dann dass ich zwei  brauche um eine basis der linearen Hülle zu bekommen.
Bezug
                        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Sa 17.02.2007
Autor: angela.h.b.


> Also nach meiner Rechnung sind die 3 Vektoren linear
> unabhängig. das bedeutet doch dann dass ich alle 3 brauche
> um eine basis des [mm]R^3[/mm] zu bekommen.
>  Verstehe ich da jetzt was falsch oder könnte ich dann als
> basis A: [mm]x_{1},x_{2},x_{3}[/mm] wählen und als Basis B z.B. B:
> [mm]2*x_{1},x_{2},x_{3}[/mm] ???

Hallo,

ja der Rang der von den Koordinaten der Vektoren aufgespannten Matrix =2, also hat die lineare Hülle die Dimension 2.

Wenn Du Dir die Sache genau anschaust, siehst Du, daß Du aus [mm] x_1, x_2 [/mm] und [mm] x_3 [/mm] drei Basen der linearen Hülle bilden kannst.

Die drei Vektoren sind paarweise unabhängig, aber mitnichten sind sie all drei unabhängig. (Daß es das gibt, lohnt es sich zu merken. Der falsche Schluß "die Vektoren sind paarweise unabhängig ==> sie sind unabhängig" ist ziemlich beliebt.)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de