www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 21.01.2008
Autor: Tyskie84

Aufgabe
Sei [mm] \IB={sin,cos,sin*cos,sin²,cos²} [/mm] und V=span [mm] \subset Abb(\IR,\IR). [/mm] Betrachten Sie den Endomorphismus F: V [mm] \to [/mm] V , f [mm] \mapsto [/mm] f´ wobei f´ die erste Ableitung  von f bezeichnet.
Zeigen Sie, dass [mm] \IB [/mm] eine Basis von V ist.

Hallo!

An für sich ist mir klar wie ich zeigen kann ob die angegebene Basis tatsächlich eine Basis ist. Nun B bildet schon ein erzeugendensystem nun muss ich ja prüfen ob sie linear unabhängig sind. Ok.
nun seien also [mm] a_{1},...a_{5} \in \IR [/mm] gegenen mit
[mm] a_{1}*sin+a_{2}cos+a_{3}sin*cos+a_{4}sin²+a_{5}cos²=0 [/mm] Irgendwie hänge ich hier wie kann ich da weiter machen?

[cap] Gruß

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 21.01.2008
Autor: angela.h.b.


> Sei [mm]\IB={sin,cos,sin*cos,sin²,cos²}[/mm] und V=span [mm]\subset Abb(\IR,\IR).[/mm]
> Betrachten Sie den Endomorphismus F: V [mm]\to[/mm] V , f [mm]\mapsto[/mm] f´
> wobei f´ die erste Ableitung  von f bezeichnet.
>  Zeigen Sie, dass [mm]\IB[/mm] eine Basis von V ist.
>  Hallo!
>  
> An für sich ist mir klar wie ich zeigen kann ob die
> angegebene Basis tatsächlich eine Basis ist. Nun B bildet
> schon ein erzeugendensystem nun muss ich ja prüfen ob sie
> linear unabhängig sind. Ok.
> nun seien also [mm]a_{1},...a_{5} \in \IR[/mm] gegenen mit
> [mm]a_{1}*sin+a_{2}cos+a_{3}sin*cos+a_{4}sin²+a_{5}cos²=0[/mm]
> Irgendwie hänge ich hier wie kann ich da weiter machen?

Hallo,

mach Dir zunächst klar, daß rechts nicht die Zahl 0 steht, sondern die Funktion, welche alles auf die Null abbildet.

Du hast heir also die Gleichheit von Funktionen zu untersuchen.

Wann sind Funktionen gleich? Wenn sie an allen Stellen übereinstimmen.

Aha.

Also folgt aus dem, was Du oben schriebst:

[mm] a_{1}*sin(x)+a_{2}cos(x)+a_{3}sin*cos(x)+a_{4}sin²(x)+a_{5}cos²(x)=0 [/mm]     für alle [mm] x\in \IR. [/mm]

Im Prinzip umfaßt das unendlich viele lineare Gleichungen, denn die Gleichung muß ja für jede reelle Zahl gelten.

Jetzt kommt es darauf an, daß Du aus den vielen reellen Zahlen 5 auswählst, mit denen Du ein eindeutig lösbares GS erhältst. Ich würde es mal mit den besonderen Stellen der trig. Funktionen versuchen.

Gruß v. Angela





Bezug
                
Bezug
Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 21.01.2008
Autor: Tyskie84

Hallo Angela!

>  
> Jetzt kommt es darauf an, daß Du aus den vielen reellen
> Zahlen 5 auswählst, mit denen Du ein eindeutig lösbares GS
> erhältst. Ich würde es mal mit den besonderen Stellen der
> trig. Funktionen versuchen.
>  
> Gruß v. Angela
>  

Ok dann könnte ich die folgenden Zahlen nehmen?

0, [mm] \pi, \bruch{\pi}{2} [/mm] , [mm] \bruch{\pi}{3} [/mm] , [mm] \bruch{pi}{4} [/mm] 2 [mm] \pi [/mm] ?? und dass dann alles einsetzen dann habe ich eine 5 [mm] \times [/mm] 5 Matrix und die muss ich lösen? Man das ist ja ganz schon viel arbeit ;-)

[cap]


Bezug
                        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 21.01.2008
Autor: angela.h.b.


> Ok dann könnte ich die folgenden Zahlen nehmen?

Mußt halt probieren, ob's funktioniert.

Ich würde allerdings eher die Vielfachen  0, [mm] \pi, \bruch{\pi}{2}, \bruch{3\pi}{2} [/mm] und vielleicht [mm] \bruch{\pi}{4} [/mm] nehmen, da gibt's mehr Einsen.

>  
> 0, [mm]\pi, \bruch{\pi}{2}[/mm] , [mm]\bruch{\pi}{3}[/mm] , [mm]\bruch{pi}{4}[/mm] 2
> [mm]\pi[/mm] ?? und dass dann alles einsetzen dann habe ich eine 5
> [mm]\times[/mm] 5 Matrix und die muss ich lösen? Man das ist ja ganz
> schon viel arbeit ;-)

Ein Studium ist halt kein Ponyhof. (Mal ganz abgesehen davon, daß es auf letzterem auch viel Arbeit gibt.)


Die Sache mit der linearen Abhängigkeit v. Funktionen hat übrigens Eigenarten, welche man sich mal klargemacht haben muß:

Angenommen, bei Deinem LGS kommt heraus, daß es eine von der trivialen Lsg. verschiedene Lösung gibt, dann hat das gar nichts weiter zu bedeuten: die Funktionen können trotzdem linear unabhängig sein - denn es kann ja andere Stellen geben, die die triviale Lösung erzwingen.

Für lineare Unabhängigkeit reicht es, wenn man ein GS findet, welches die triviale Lösung erzwingt.

Bei Abhängigkeit mußt Du zeigen, daß die nichttriviale Linearkombi für alle x funktioniert.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de