www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen eines Vektorraumes
Basen eines Vektorraumes < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen eines Vektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Fr 30.11.2012
Autor: Zero_112

Aufgabe
Es seien in [mm] \IR^5 [/mm] die Vektoren
[mm] v_1 [/mm] := (4,1,1,0,-2); [mm] v_2 [/mm] := (0,1,4,-1,2); [mm] v_3 [/mm] := (4,3,9,-2,2); [mm] v_4 [/mm] := (1,1,1,1,1);
[mm] v_5 [/mm] := (0,-2,-8,2,-4)  gegeben. Zudem sei V:= [mm] span(v_1,v_2,v_3,v_4,v_5). [/mm]

Finden Sie alle Basen von V, die aus Elementen von { [mm] v_1,...,v_5 [/mm] } bestehen, und kombinieren Sie jeweils [mm] v_1,...,v_5 [/mm] daraus linear.

Ich weiß nicht genau, wie ich Basen "finden" bzw hier überhaupt vorgehen soll. Kann mir jmd einen Ansatz geben?

        
Bezug
Basen eines Vektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Fr 30.11.2012
Autor: leduart

Hallo
die Menge der lin unabh. Vektoren aus dem Spann geben jeweils eine Basis.
also bestimm erstmal die Dimension von V, und such dann wenn die etwa 2 wäre je 2 lin unabh. Vektoren raus, die bilden dann eine Basis. entsprechen dim3 eben 3 Vektoren usw.
Gruss leduart

Bezug
                
Bezug
Basen eines Vektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Fr 30.11.2012
Autor: Zero_112

Da wir in [mm] \IR^5 [/mm] sind, dürfte die Dimension ja gleich 5 sein, oder? Nur die 5 Vektoren dort sind gar nicht alle lin unabh...also kann ich keine 5 heraussuchen ...oder mache ich hier gerade etwas falsch?

Bezug
                        
Bezug
Basen eines Vektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Fr 30.11.2012
Autor: MathePower

Hallo Zero_112,

> Da wir in [mm]\IR^5[/mm] sind, dürfte die Dimension ja gleich 5
> sein, oder? Nur die 5 Vektoren dort sind gar nicht alle lin


Eine Basis des [mm]\IR^{5}[/mm] hat die Dimension 5.


> unabh...also kann ich keine 5 heraussuchen ...oder mache
> ich hier gerade etwas falsch?


Nein, da machst Du nichts falsch.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de