www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basen finden
Basen finden < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Do 25.01.2007
Autor: ueberforderter_Ersti

Aufgabe
Sei f [mm] \in Hom(K^{3},K^{2}) [/mm] durch f(x,y,z)=(x-y,y-z) definiert. Finde eine Basis [mm] B=(e_{1},e_{i},v) [/mm] von [mm] K^{3}, [/mm] mit v=(1,?,?), so dass [mm] \psi_{CB}(f)=\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 } [/mm] mit [mm] C=(?,\pm e_{2}) [/mm]

Hallo liebe Helfer,
Wieder einmal stecke ich bei einer Aufabe fest, wobei ich das Gefühl habe ich bin gar nicht mehr so weit von der Lösung entfernt..
Also folgendes habe ich mir schon überlegt:
[mm] \psi [/mm] ist von Hom [mm] \to [/mm] Mat, wir haben aber hier ja schn die Matrix, also wird f angewandt auf [mm] v_{1}=(1,0) [/mm] sein, auf [mm] v_{2}=(0,1) [/mm] und auf [mm] v_{3}=(0,0). [/mm]
Also z.B. für [mm] v_{1} [/mm] wäre das dann x-y=1, y-z=0
Nun hier habe ich mein problem:
Wie komme ich auf [mm] v_{1} [/mm] bis [mm] v_{3}? [/mm] Sind das einfach die 3 Elemente von B? Würde ja im ersten Fall recht gut aufgehen, nur im zweiten Fall nicht und was mache ich dann mit C?
Wäre sehr forh, wenn mir da jemand auf die Sprünge helfen könnte..
Lg Ersti

p.s. ich habe diese Frage in keinem anderen Internetforum gepostet.

        
Bezug
Basen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Fr 26.01.2007
Autor: angela.h.b.


> Sei f [mm]\in Hom(K^{3},K^{2})[/mm] durch f(x,y,z)=(x-y,y-z)
> definiert. Finde eine Basis [mm]B=(e_{1},e_{i},v)[/mm] von [mm]K^{3},[/mm]
> mit v=(1,?,?), so dass [mm]\psi_{CB}(f)=\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 }[/mm]
> mit [mm]C=(?,\pm e_{2})[/mm]

Hallo,

ich glaube, daß es übersichtlicher wird, wenn wir ein paar neue Bezeichnungen für die Basisvektoren einführen.

Gesucht wird eine Basis [mm] B:=(b_1,b_2,b_3) [/mm] von [mm] K^3 [/mm] undeine Basis [mm] C:=(c_1,c_2) [/mm] von [mm] K^2, [/mm] so daß die Darstellende Matrix der Abbildung [mm] \phi [/mm] in diesen Basen
[mm] \psi_{CB}(f)=\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0} [/mm] ist.

Für die Basen auferlegt die Aufgabe einige Einschränkungen:

Es soll sein
[mm] b_1:=\vektor{1 \\ 0 \\ 0}, [/mm]
[mm] b_2:=\vektor{0\\ 1 \\ 0} [/mm] oder [mm] b_2:=\vektor{0 \\ 0 \\ 1} [/mm]
[mm] b_3:=\vektor{1 \\ r \\ s} [/mm]

und [mm] c_2:=\pm \vektor{0 \\ 1 }. [/mm]

Jetzt schauen wir die Matrix an, also die Abbildung der Basisvektoren.

> Also folgendes habe ich mir schon überlegt:
>  [mm]\psi[/mm] ist von Hom [mm]\to[/mm] Mat, wir haben aber hier ja schn die
> Matrix, also wird f angewandt auf [mm]v_{1}=(1,0)[/mm] sein, auf
> [mm]v_{2}=(0,1)[/mm] und auf [mm]v_{3}=(0,0).[/mm]

Das ist richtig - nur muß man gut überlegen, was das bedeutet.
[mm] \psi_{CB}(f) [/mm] ist ja die Matrix, die die Abbildungen bzgl. B und C beschreibt.

Das bedeutet
[mm] \phi(b_{1})=(1,0)_C=1*c_1+0*c_2, [/mm]
[mm] \phi(b_{2})=(0,1)_C=0*c_1+1*c_2, [/mm]
[mm] \phi(b_{3})=(0,0)_C=0*c_1+0*c_2=0 [/mm]

Und nun kannst Du anfangen, koordinatenweise zu arbeiten und es Dir zurechtzubiegen:

[mm] c_1=\phi(b_{1})=... (b_1 [/mm] einsetzen)

usw.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de