www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen von Eigenräumen
Basen von Eigenräumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 12.09.2006
Autor: cloe

Hallo zusammen,

ich hab eine allgemeine Frage zum Thema Eigenwerttheorie und zwar,

wie berechnet man die Basen von Eigenräumen?

Könnte mir das bitte jemand anhand eines Beispiels erklären?

Danke im Voraus.

cloe

        
Bezug
Basen von Eigenräumen: Ansatz
Status: (Antwort) fertig Status 
Datum: 14:25 Di 12.09.2006
Autor: ron

Hallo cloe,
schaue dir einfach mal an wie die Bedingung für Eigenwerte und Eigenvektoren lautet:

A v = [mm] \alpha [/mm] v

Av - [mm] \alpha [/mm] v = 0

(A - [mm] \alpha E_n [/mm] )v = 0  (Hier ist [mm] E_n [/mm] die Einheitsmatrix der Dim = n)

somit löst du ein homogenes lineares Gleichungssystem zu jedem Eigenwert.

Findest du zu k Eigenwerten [mm] \alpha_k [/mm] über diese Methode genau n Eigenvektoren [mm] v_i_k [/mm] , dann hast du eine Basis aus Eigenvektoren von [mm] \IR^n [/mm] gefunden und die Matrix A läßt sich diagonalisieren.

Jetzt kann es vorkommen, dass die Dimesion dieses Eigenraumes kleiner ist als die Vielfachheit des Eigenwertes als Nullstelle des charakteristischen Polynomes, darüber hast du ja EW berechnet.
Dann mußt du die Dimension "aufbohnen" über die sog. Haupträume zum Eigenwert.
Hoffe es hilft dir fürs Erste.
Gruß
Ron

Bezug
                
Bezug
Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 12.09.2006
Autor: cloe

Hallo,

ich hätte da ne Frage zu folgendem Beispiel.

Also es die Matrix A gegeben.

A= [mm] \pmat{ 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3} [/mm]

Ich hab folgendes charakteristische Polynom dazu herausbekommen

f(x) = [mm] x^3 [/mm] - [mm] 5x^2 [/mm] + 8x - 4

und die Eigenwerte 2 und 1

Die Eigenvektoren zu 2 sind [mm] \vektor{-1 \\ 0 \\ 1} [/mm] und [mm] \vektor{0 \\ 1 \\ 0} [/mm]

und der Eigenvektor zu 1 ist [mm] \vektor{-2 \\ 1 \\ 1} [/mm]


Ist das soweit richtig???

Wie sieht eigentlich der Eigenraum aus?

Kann mir da bitte jemand weiterhelfen?

Danke im voraus.

Bezug
                        
Bezug
Basen von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 12.09.2006
Autor: EvenSteven


> Hallo,

Hoi

> ich hätte da ne Frage zu folgendem Beispiel.
>  
> Also es die Matrix A gegeben.
>  
> A= [mm]\pmat{ 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3}[/mm]
>  
> Ich hab folgendes charakteristische Polynom dazu
> herausbekommen
>  
> f(x) = [mm]x^3[/mm] - [mm]5x^2[/mm] + 8x - 4
>
> und die Eigenwerte 2 und 1
>  
> Die Eigenvektoren zu 2 sind [mm]\vektor{-1 \\ 0 \\ 1}[/mm] und
> [mm]\vektor{0 \\ 1 \\ 0}[/mm]
>  
> und der Eigenvektor zu 1 ist [mm]\vektor{-2 \\ 1 \\ 1}[/mm]
>  
>
> Ist das soweit richtig???
>  

Alles tiptop [ok]

> Wie sieht eigentlich der Eigenraum aus?

Der Eigenraum zum Eigenwert [mm] $\lambda$ [/mm] ist wie folgt definiert:
[mm] $E_{\lambda}=Kern(A-\lambda*I)$ [/mm]
Der Eigenraum [mm] $E_{\lambda}$ [/mm] wird (wie aus der Def. der Eigenvektoren ersichtlich) damit von allen Eigenvektoren zum Eigenwert [mm] \lambda [/mm] aufgespannt.

> Danke im voraus.


Gruss

EvenSteven

Bezug
                                
Bezug
Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 12.09.2006
Autor: cloe

Wie würde der Eigenraum bei meinem Beispiel aussehen?

Könntest du mir da noch bitte helfen.

Danke

Bezug
                                        
Bezug
Basen von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Di 12.09.2006
Autor: EvenSteven


> Wie würde der Eigenraum bei meinem Beispiel aussehen?
>

Hmm also die Eigenvektoren hast du ja schon, die Def. ja auch.
Nennen wir die Eigenvektoren zum Eigenwert 2 [mm] $v_{1}$ [/mm] und [mm] $v_{2}$. [/mm] Dann gilt

[mm] $E_{2}=Span\{v_{1},v_{2}\}$ [/mm]

Oder meinst du mit "aussehen" eine Zeichnung oder so? Das wäre dann 'ne Ebene durch den Ursprung.

> Könntest du mir da noch bitte helfen.
>  
> Danke

Gruss

EvenSteven



Bezug
                                                
Bezug
Basen von Eigenräumen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Di 12.09.2006
Autor: cloe

Danke für deine Hilfe!

Gruß, cloe

Bezug
                                                        
Bezug
Basen von Eigenräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Di 12.09.2006
Autor: EvenSteven


> Danke für deine Hilfe!
>  
> Gruß, cloe

Aber gerne doch :-)

Ciao

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de