www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basen von Eigenräumen
Basen von Eigenräumen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 05.06.2011
Autor: paula_88

Aufgabe
$ [mm] \pmat{ s+1 & 2-s & 0 \\ 2-s & s+1 & 0 \\ 2-0,5s & 1-0,5s & s } [/mm] $

Aufgabe:
Zu finden sind Basen der Eigenräume von [mm] A_{s} [/mm] für s [mm] \in \{0,1,3\}. [/mm]

Guten Morgen,
diese Aufgabe ist denke ich an sich nicht schwirig, ich habe sowas allerdins noch nie gemacht bzw eine ähnliche Aufgabe gesehen.

Die Aufgabe ist doch, aus
a) [mm] \pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 } [/mm]
b) [mm] \pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1,5 & 0,5 & 1 } [/mm]
c) [mm] \pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 } [/mm]
den drei Matrizen jeweils eine zugehörige Basis zu finden, oder?

Könnte mir jemand einmal bitte in eignen Worten erklären, wie man allgemein eine zugehörige Basis einer Matrix ermittel und es mir an einer der drei Matrizen demonstrieren, dass ich es an den anderen beiden versuchen kann?

Ich bitte um Hilfe :-)
Paula

        
Bezug
Basen von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 So 05.06.2011
Autor: schachuzipus

Hallo Paula,


> [mm]\pmat{ s+1 & 2-s & 0 \\ 2-s & s+1 & 0 \\ 2-0,5s & 1-0,5s & s }[/mm]
>  
> Aufgabe:
>  Zu finden sind Basen der Eigenräume von [mm]A_{s}[/mm] für s [mm]\in \{0,1,3\}.[/mm]
>  
> Guten Morgen,
>  diese Aufgabe ist denke ich an sich nicht schwirig, ich
> habe sowas allerdins noch nie gemacht bzw eine ähnliche
> Aufgabe gesehen.
>  
> Die Aufgabe ist doch, aus
>  a) [mm]\pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 }[/mm] [ok]
>  b) [mm]\pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1,5 & 0,5 & 1 }[/mm] [ok]
>  
> c) [mm]\pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 }[/mm] [ok]
>  den
> drei Matrizen jeweils eine zugehörige Basis zu finden,
> oder?

Nein, du sollst doch eine Basis zu den jeweiligen Eigenräumen bestimmen!

Was ist ein Eigenraum? Was hat er mit "Kern" zu tun?


Du musst jeweils den Kern bestimmen.

Bringe dazu die Matrizen in Zeilenstufenform.

Dann kannst du den Kern und eine Basis desselben bestimmen/angeben.

>  
> Könnte mir jemand einmal bitte in eignen Worten erklären,
> wie man allgemein eine zugehörige Basis einer Matrix
> ermittel

Was soll eine Basis einer Matrix sein??

Ich kenne nur Basen von Vektorräumen.

Der Kern einer Matrix ist ein VR, es gilt also eine Basis des Kernes zu bestimmen!

> und es mir an einer der drei Matrizen
> demonstrieren, dass ich es an den anderen beiden versuchen
> kann?

Nö, wie es geht, habe ich oben geschrieben.

Probiere erstmal selbst; so lernst du das am Besten ...

Wenn du irgendwo hakst, poste deine Schritte und wir sehen weiter.

>  
> Ich bitte um Hilfe :-)
>  Paula

Gruß

schachuzipus


Bezug
                
Bezug
Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 So 05.06.2011
Autor: paula_88

Vielen Dank für die Antwort, ich habe mich mal versucht und folgendes erhalten:

$ [mm] \pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 } [/mm] $
Diese Matrix habe ich in Zeilenstufenform gebracht:
[mm] Z_{3}-Z_{2}=$ \pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 } [/mm] $
=> [mm] Z_{2}-2Z_{1}=$ \pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 } [/mm] $
Dies habe ich in ein LG umgewandelt und gelöst:
$ [mm] \pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 } [/mm] $ [mm] \* \vektor{x \\ y \\ z}=0 [/mm]
Da man nur 2 Gleichungen, aber 3 Unbekannte hat, habe ich z=0 bestimmt.
Anhand der beiden Gleichungen ergeben sich dann x und y als 0, somit komme ich auf den Vektor [mm] \vektor{0 \\ 0 \\ 1}. [/mm]
Ist das jetzt schon meine Basis? Eigentlich errechnet man ja anhand solch eines Gleichungssystems den Kern der Matrix...ich bitte um Aufklärung :-)

Für die anderen beiden Matritzen $ [mm] \pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1,5 & 0,5 & 1 } [/mm] $ und $ [mm] \pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 } [/mm] $ habe ich leider keinen Weg gefunden, diese in Zeilenstufenform zu bringen, hat da jemand eine Idee oder einen Tip für mich?

Vielen Dank für die Hilfe.
Paula

Bezug
                        
Bezug
Basen von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 So 05.06.2011
Autor: abakus


> Vielen Dank für die Antwort, ich habe mich mal versucht
> und folgendes erhalten:
>  
> [mm]\pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 }[/mm]
>  Diese Matrix
> habe ich in Zeilenstufenform gebracht:
>  [mm]Z_{3}-Z_{2}=[/mm] [mm]\pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> => [mm]Z_{2}-2Z_{1}=[/mm] [mm]\pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Dies habe ich in ein LG umgewandelt und gelöst:
>  [mm]\pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 }[/mm] [mm]\* \vektor{x \\ y \\ z}=0[/mm]
>  
> Da man nur 2 Gleichungen, aber 3 Unbekannte hat, habe ich
> z=0 bestimmt.
>  Anhand der beiden Gleichungen ergeben sich dann x und y
> als 0, somit komme ich auf den Vektor [mm]\vektor{0 \\ 0 \\ 1}.[/mm]
>  
> Ist das jetzt schon meine Basis? Eigentlich errechnet man
> ja anhand solch eines Gleichungssystems den Kern der
> Matrix...ich bitte um Aufklärung :-)
>  
> Für die anderen beiden Matritzen [mm]\pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1,5 & 0,5 & 1 }[/mm]
> und [mm]\pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 }[/mm]
> habe ich leider keinen Weg gefunden, diese in
> Zeilenstufenform zu bringen, hat da jemand eine Idee oder
> einen Tip für mich?

Für deine erste Matrix: Addiere zur 2. Zeile das (-0,5)-fache der ersten.
Addiere zur 3. Zeile das (-0,75)-fache der ersten.
Gruß Abakus

>  
> Vielen Dank für die Hilfe.
>  Paula


Bezug
                                
Bezug
Basen von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 05.06.2011
Autor: paula_88

Hey, alles klar, vielen Dank, das habe ich gemacht und bekomme Folgendes raus:

1. Schritt: $ [mm] \pmat{ 2 & 1 & 0 \\ 0 & 1,5 & 0 \\ 1,5 & 0,5 & 1 } [/mm] $
2. Schritt: $ [mm] \pmat{ 2 & 1 & 0 \\ 0 & 1,5 & 0 \\ 0 & 0,25 & 0 } [/mm] $
Dann habe ich ein Gleichungssystem aufgestellt, da kommt dann ja aber raus, dass x und y = 0 sind und z wähle ich als 1. Somit hätte ich wieder die Basis [mm] \vektor{0 \\ 0 \\ 1}, [/mm] stimmt das?

War meine andere Rechnung von vorher denn richtig?

>  
> $ [mm] \pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 } [/mm] $
>  Diese Matrix
> habe ich in Zeilenstufenform gebracht:
>  $ [mm] Z_{3}-Z_{2}= [/mm] $ $ [mm] \pmat{ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 } [/mm] $
>  
> => $ [mm] Z_{2}-2Z_{1}= [/mm] $ $ [mm] \pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 } [/mm] $
>  
> Dies habe ich in ein LG umgewandelt und gelöst:
>  $ [mm] \pmat{ 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 } [/mm] $ $ * [mm] \vektor{x \\ y \\ z}=0 [/mm] $
>  
> Da man nur 2 Gleichungen, aber 3 Unbekannte hat, habe ich
> z=0 bestimmt.
>  Anhand der beiden Gleichungen ergeben sich dann x und y
> als 0, somit komme ich auf den Vektor $ [mm] \vektor{0 \\ 0 \\ 1}. [/mm] $

Und könnte mir jemand noch einen Tip für die letzte Matrix geben, wie ich da auf die Zeilenstufenform komme?
$ [mm] \pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 } [/mm] $

Vielen Dank im Voraus

Bezug
                                        
Bezug
Basen von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 05.06.2011
Autor: wieschoo

Tach,
du rennst irgendwie in die falsche Richtung:
Grob für die Matrix
[mm] A:=\pmat{ 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0,5 & -0,5 & 3 } [/mm]
sollte es so laufen:
Man bestimmt das charakteristische Polynom : [mm] \left( \lambda-5 \right) \left( \lambda-3 \right) ^{2}[/mm]
Daher hat A zwei Eigenwerte 5,3

Eigenraum zum Eigenwert 5:
Berechne [mm]B:=A-5*E_3= \left[ \begin {array}{ccc} -1&-1&0\\ -1&-1&0\\ 1/2&-1/2&-2\end {array} \right] [/mm]
Hier bestimmst du [mm]Kern(B)=span\{ (2,-2,1)^T \}[/mm] durch die reduzierte Zeilenstufenform. Der Kern wird nicht direkt von der Matrix A selber bestimmt! Der Eigenraum wird also vom Eigenvektor [mm](2,-2,1)^T[/mm] aufgespannt.

Eigenraum zum Eigenwert 3:
Berechne [mm]B:=A-3*E_3= \left[ \begin {array}{ccc} 1&-1&0\\ -1&1&0\\ 1/2&-1/2&0\end {array} \right] [/mm]
Der Kern von B wird durch die beiden Vektoren: [mm](0,0,1)^T,(1,1,0)^T[/mm] aufgespannt.

Zum Berechnen der reduzierten Zeilenstufenform kann dir nur empfehlen dich noch einmal mit dem Gauß-Jordan-Algorithmus vertraut zu machen. (http://werkzeuge.wieschoo.com/rref.php)

Zum Eigenwert 3 lautet die Rechnung z.B.:


Gauss-Jordan-Algorithmus

Und nun bringen wir die Matrix auf reduzierte Zeilenstufenform:
[mm]\left( \begin {array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ \tfrac{1}{2} & \tfrac{-1}{2} & 0 \\ \end {array} \right) [/mm]

Die aktuelle Zeile 2 verändern, indem wir ein Vielfaches der Zeile 1 hinzuaddieren.
[mm]\left( \begin {array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ \tfrac{1}{2} & \tfrac{-1}{2} & 0 \\ \end {array} \right) [/mm]

Die aktuelle Zeile 3 verändern, indem wir ein Vielfaches der Zeile 1 hinzuaddieren.
[mm]\left( \begin {array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end {array} \right) [/mm]


Die reduzierte Zeilenstufenform der Matrix:
[mm]A=\left( \begin {array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ \tfrac{1}{2} & \tfrac{-1}{2} & 0 \\ \end {array} \right) [/mm]

lautet:
[mm]\tilde{A}=\left( \begin {array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end {array} \right) [/mm]






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de