www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen von Vektoräumen
Basen von Vektoräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von Vektoräumen: Idee
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 13.03.2008
Autor: chris123

Aufgabe
Zeigen Sie: Wenn V ein komplexer Vektoraum ist und [mm] (v_{k\}) _{k\inI} [/mm] eine Basis von V, dann ist V auch ein reeller Vektiraum. Die Familie [mm] (w_{l\}) l\inJ, [/mm] wobei J= (I x [mm] \{1\}) \cup [/mm] (I x [mm] \{2\}) [/mm] und für alle k [mm] \in [/mm] I w (k,1)= vk, w (k,2) = ivk ist, ist eine Basis dieses reellen Vektoraums.
Geben sie je eine Basis des reellen und des komplexen Vektoraums [mm] \IC [/mm] ^{2x2} an.

Hallo, wollte euch fragen, ob ihr mir Anregungen geben könntet wie ich diese Aufgabe lösne könnte.

Und tut mir lei, dass die Angabe nicht aussieht wie sie eigentlich sollte.

Danke im Voraus



Ich habe diese Frage in keinem anderen Fourm veröffentlicht.

        
Bezug
Basen von Vektoräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Do 13.03.2008
Autor: Somebody


> Zeigen Sie: Wenn V ein komplexer Vektoraum ist und [mm](v_{k\}) _{k\inI}[/mm]
> eine Basis von V, dann ist V auch ein reeller Vektiraum.
> Die Familie [mm](w_{l\}) l\in J,[/mm] wobei J= (I x [mm]\{1\}) \cup[/mm] (I x
> [mm]\{2\})[/mm] und für alle k [mm]\in[/mm] I w (k,1)= vk, w (k,2) = ivk ist,
> ist eine Basis dieses reellen Vektoraums.
> Geben sie je eine Basis des reellen und des komplexen
> Vektoraums [mm]\IC[/mm] ^{2x2} an.
>  Hallo, wollte euch fragen, ob ihr mir Anregungen geben
> könntet wie ich diese Aufgabe lösne könnte.

Durch Einschränken des Skalarenkörpers von [mm] $\IC$ [/mm] auf [mm] $\IR$ [/mm] bleiben die Vektorraumaxiome jedenfalls weiterhin erfüllt. Also kann $V$ dank einer solchen Einschränkung als reeller Vektorraum aufgefasst werden.
Die vorgeschlagene Basis [mm] $w_l$ [/mm] für diesen reellen Vektorraum ist eine linear-unabhängige Familie von Vektoren, da jede Nullsumme der [mm] $w_l$ [/mm] zu einer Nullsumme von Basisvektoren [mm] $v_k$ [/mm] in $V$, nun wieder aufgefasst als komplexer Vektoraum, umgeformt werden kann.
Die [mm] $w_l$ [/mm] erlauben aber auch jeden Vektor von $V$ als reelle Linearkombination darzustellen, da er sich als Linearkombination der [mm] $v_k$ [/mm] mit komplexen Skalaren darstellen lässt und sich diese Linearkombination (durch Trennen von Real- und Imaginärteilen der darin auftretenden Skalare) aber leicht in eine reelle Linearkombiation der [mm] $w_l$ [/mm] umformen lässt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de