www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis Beweis
Basis Beweis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Beweis: Lineare Unabh. / Erzeugendens.
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 19.01.2010
Autor: Salamence

Aufgabe
Sei für [mm] i\in \IN_{0} [/mm] mit i<m
[mm] \pi_{i}: \IK^{m} \to \IK [/mm]
[mm] \vektor{x_{0} \\ . \\ . \\ x_{m-1} } \mapsto x_{i} [/mm]
und sei für ein n-Tupel [mm] (i_{0},...,i_{n-1}) [/mm] mit [mm] i_{j} [mm] \pi_{i_{0},...i_{m-1}}: (\IK^{m})^{n} \to \IK [/mm] ; [mm] v_{j}\in \IK^{m} [/mm]
[mm] (v_{0},...,v_{n-1})\mapsto \produkt_{j=0}^{n-1}(\pi_{i_{j}}(v_{j})) [/mm]

Zeigen Sie, dass die [mm] \pi_{i_{0},...,i_{m-1}} [/mm] eine Basis des [mm] Mult_{n}(\IK^{m}) [/mm] bilden.

z. z.:
(1) Multilinearität
(2) Lineare Unabhängigkeit
(3) Erzeugendensystem

Ersteres ist ja noch das einfachste, aber wie zur Hölle zeige ich die lineare Unabhängigkeit und dass der die lineare Hülle dieser Biester der ganze VR ist?
Wenn man wenigstens wüsste, wie so eine n-lineare Abbildung im Allgemeinen aussieht, damit man zeigen könnte, dass sie als Linearkombination der [mm] \pi [/mm] ausgedrückt werden kann...
Und bei (2) muss ich irgendwie zeigen, dass es für verschiedene n-Tupel 1 und 2 immer eine Stelle (...) gibt wo [mm] \pi_{1}(...)\not=\alpha*\pi_{2}(...) [/mm] (Wenn ich das richtig verstehe.)
Doch wie stelle ich das an?

        
Bezug
Basis Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 20.01.2010
Autor: rainerS

Hallo!

> Sei für [mm]i\in \IN_{0}[/mm] mit i<m
>  [mm]\pi_{i}: \IK^{m} \to \IK[/mm]
>  [mm]\vektor{x_{0} \\ . \\ . \\ x_{m-1} } \mapsto x_{i}[/mm]
>  
> und sei für ein n-Tupel [mm](i_{0},...,i_{n-1})[/mm] mit [mm]i_{j}
>  [mm]\pi_{i_{0},...i_{m-1}}: (\IK^{m})^{n} \to \IK[/mm] ; [mm]v_{j}\in \IK^{m}[/mm]
>  
> [mm](v_{0},...,v_{n-1})\mapsto \produkt_{j=0}^{n-1}(\pi_{i_{j}}(v_{j}))[/mm]
>  
> Zeigen Sie, dass die [mm]\pi_{i_{0},...,i_{m-1}}[/mm] eine Basis des
> [mm]Mult_{n}(\IK^{m})[/mm] bilden.
>  
> z. z.:
> (1) Multilinearität
>  (2) Lineare Unabhängigkeit
>  (3) Erzeugendensystem
>  
> Ersteres ist ja noch das einfachste, aber wie zur Hölle
> zeige ich die lineare Unabhängigkeit und dass der die
> lineare Hülle dieser Biester der ganze VR ist?
> Wenn man wenigstens wüsste, wie so eine n-lineare
> Abbildung im Allgemeinen aussieht, damit man zeigen
> könnte, dass sie als Linearkombination der [mm]\pi[/mm]
> ausgedrückt werden kann...
>  Und bei (2) muss ich irgendwie zeigen, dass es für
> verschiedene n-Tupel 1 und 2 immer eine Stelle (...) gibt
> wo [mm]\pi_{1}(...)\not=\alpha*\pi_{2}(...)[/mm] (Wenn ich das
> richtig verstehe.)
>  Doch wie stelle ich das an?

Schreib dir die Definition der [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] explizit hin: wenn [mm] $v_j$ [/mm] die Form

  [mm] v_j = \vektor{v_{j,0} \\ . \\ . \\ v_{j,m-1} } [/mm]

hat, so ist

  [mm]\pi_{i_{0},...i_{m-1}}((v_{0},...,v_{n-1})) = \produkt_{j=0}^{n-1}v_{j,i_j} [/mm] ,

also die [mm] $i_0$-te [/mm] Komponente von [mm] $v_0$, [/mm] multipliziert mit der [mm] $i_1$-ten [/mm] Komponente von [mm] $v_1$, [/mm] usw.

Wenn ich die Komponenten der [mm] $v_j$ [/mm] als [mm] $m\times [/mm] n$-Matrix schreibe:

[mm] \begin{pmatrix} v_{0,0} & v_{1,0} & \dots & v_{n-1,0} \\ v_{0,1} & v_{1,1} & \dots & v_{n-1,1} \\ \hdotsfor{4} \\ v_{0,m-1} & v_{1,m-1}& \dots & v_{n-1,m-1} \end{pmatrix} [/mm],

so wählt [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] aus jeder Spalte genau einen Faktor aus. Es sind immer genau $n$ Faktoren, und wenn sich die Indizes in [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] unterscheiden, dann unterscheiden sich auch die Faktoren im Produkt.

Viele Grüße
   Rainer

Bezug
                
Bezug
Basis Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mi 20.01.2010
Autor: Salamence

Ich verstehe noch nicht ganz, wie man das mit dem Erzeugendensystem zeigt. Aber ich glaube das mit der linearen Unabhängigkeit hab ich jetzt.
Sei [mm] (i_{0},...,i_{n-1}) [/mm] ein n-Tupel natürlicher Zahlen kleiner m und sei [mm] (v_{0},...,v_{n-1}) [/mm] ein n-Tupel von Vektoren aus [mm] \IK^{m} [/mm] derart, dass [mm] v_{a} [/mm] an der Stelle [mm] i_{a} [/mm] eine 1 hat, sonst Nullen. Dann gilt:
[mm] \pi_{i_{0},...,i_{n-1}}(v_{0},...,v_{n-1})=1 [/mm] und [mm] \pi=0 [/mm] für alle anderen n-Tupel natürlicher Zahlen <m. Daher sind die [mm] \pi [/mm] linear unabhängig.
Aber dass sie den [mm] Mult_{n}(\IK^{m}) [/mm] krieg ich nicht gezeigt... Wie geht das denn?

Bezug
                        
Bezug
Basis Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mi 20.01.2010
Autor: rainerS

Hallo!

> Ich verstehe noch nicht ganz, wie man das mit dem
> Erzeugendensystem zeigt. Aber ich glaube das mit der
> linearen Unabhängigkeit hab ich jetzt.
> Sei [mm](i_{0},...,i_{n-1})[/mm] ein n-Tupel natürlicher Zahlen
> kleiner m und sei [mm](v_{0},...,v_{n-1})[/mm] ein n-Tupel von
> Vektoren aus [mm]\IK^{m}[/mm] derart, dass [mm]v_{a}[/mm] an der Stelle [mm]i_{a}[/mm]
> eine 1 hat, sonst Nullen. Dann gilt:
> [mm]\pi_{i_{0},...,i_{n-1}}(v_{0},...,v_{n-1})=1[/mm] und [mm]\pi=0[/mm] für
> alle anderen n-Tupel natürlicher Zahlen <m. Daher sind die
> [mm]\pi[/mm] linear unabhängig.
> Aber dass sie den [mm]Mult_{n}(\IK^{m})[/mm] krieg ich nicht
> gezeigt... Wie geht das denn?

Du könntest zeigen, dass die Anzahl der linear unabhängigen [mm] $\pi$'s [/mm] gleich der Dimension des [mm]Mult_{n}(\IK^{m})[/mm] ist.

Oder du nimmst dir ein beliebiges Element [mm] $x\in Mult_{n}(\IK^{m})$ [/mm] und gibst eine explizite Darstellung als Summe der [mm] $\pi$'s [/mm] an.

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Basis Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 20.01.2010
Autor: Salamence


> Du könntest zeigen, dass die Anzahl der linear
> unabhängigen [mm]\pi[/mm]'s gleich der Dimension des
> [mm]Mult_{n}(\IK^{m})[/mm] ist.

Wir sollen gerade zeigen, dass die [mm] \pi [/mm] eine Basis bilden, um zu beweisen, dass die Dimension [mm] m^{n} [/mm] ist.

> Oder du nimmst dir ein beliebiges Element [mm]x\in Mult_{n}(\IK^{m})[/mm]
> und gibst eine explizite Darstellung als Summe der [mm]\pi[/mm]'s
> an.

Kann man denn so eine explizite Darstellung angeben? Ich meine, ich habe mir auch schon überlegt, dass man das machen müsste, aber wie sieht denn ein allgemeines Element aus dem [mm] Mult_{n}(\IK^{m}) [/mm] aus? Gibt es überhaupt eine allgemeine Darstellung so einer n-Linearform?

> Viele Grüße
>      Rainer


Bezug
                                        
Bezug
Basis Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Mi 20.01.2010
Autor: rainerS

Hallo!

> > Du könntest zeigen, dass die Anzahl der linear
> > unabhängigen [mm]\pi[/mm]'s gleich der Dimension des
> > [mm]Mult_{n}(\IK^{m})[/mm] ist.
>  Wir sollen gerade zeigen, dass die [mm]\pi[/mm] eine Basis bilden,
> um zu beweisen, dass die Dimension [mm]m^{n}[/mm] ist.
>  
> > Oder du nimmst dir ein beliebiges Element [mm]x\in Mult_{n}(\IK^{m})[/mm]
> > und gibst eine explizite Darstellung als Summe der [mm]\pi[/mm]'s
> > an.
>
> Kann man denn so eine explizite Darstellung angeben? Ich
> meine, ich habe mir auch schon überlegt, dass man das
> machen müsste, aber wie sieht denn ein allgemeines Element
> aus dem [mm]Mult_{n}(\IK^{m})[/mm] aus? Gibt es überhaupt eine
> allgemeine Darstellung so einer n-Linearform?

Du hast doch vorhin die Vektoren [mm] $v_a$ [/mm] definiert, bei denen nur eine Komponente [mm] $v_{a,i_a}=1$ [/mm] ist. Schreibe dir n Vektoren [mm] $w_i$ [/mm] als Linearkombination dieser [mm] $v_a$'s [/mm] hin und wende deine n-Linearform darauf an.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de