www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis Bild/Kern
Basis Bild/Kern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Bild/Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Sa 10.12.2005
Autor: FunDancerBhv

Hallo,
wie sieht das aus, wenn ich nun eine Matrix mit mehr Zeilen als Spalten habe. Im konkreten Fall wäre dies die Matrix
[mm] \pmat{ 3 & 3 & 1&1\\ 1&1&2&3\\4&2&1&3\\3&1&4&4\\2&1&3&1 } [/mm]
Wenn ich diese nun mit dem angegebenen Algorithmus lt. der Antwort bearbeite (Transponieren rechts daneben die Einheitsmatrix und Umformung in eine obere Dreiecksmatrix=Zeilenstufenform) bekomme ich in der linken Matrix keine Nullzeilen, und daher keine Basis des Kerns. Was mache ich hier falsch?
Mein Ergebnis:
[mm] \pmat{1&2&3&1&4|&2&0&0&0\\ 0&1&0&3&2|&3&0&0&1\\ 0&0&1&4&2|&4&0&3&0\\ 0&0&0&1&3|&2&1&1&0\\ } [/mm]
Dabei dienen die | nur als Trennstrich zwischen der linken transponierten Matrix und der rechten ehemaligen Einheitsmatrix.

Gruß
  FunDancerBhv

        
Bezug
Basis Bild/Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 So 11.12.2005
Autor: angela.h.b.


> Hallo,

Hallo,

und  [willkommenmr]  .

>  wie sieht das aus,

Was denn eigentlich ...?

Der Überschrift entnehme ich, daß Du Kern und Bild bestimmen möchtest.

Der Kern ist bei dieser Matrix = {0}.
Von daher ist es gar kein Wunder, daß Du keine Basis des Kerns ablesen kannst, der Kern hat ja die Dimension 0.

Gruß v. Angela







wenn ich nun eine Matrix mit mehr

> Zeilen als Spalten habe. Im konkreten Fall wäre dies die
> Matrix
>   [mm]\pmat{ 3 & 3 & 1&1\\ 1&1&2&3\\4&2&1&3\\3&1&4&4\\2&1&3&1 }[/mm]
>  
> Wenn ich diese nun mit dem angegebenen Algorithmus lt. der
> Antwort bearbeite (Transponieren rechts daneben die
> Einheitsmatrix und Umformung in eine obere
> Dreiecksmatrix=Zeilenstufenform) bekomme ich in der linken
> Matrix keine Nullzeilen, und daher keine Basis des Kerns.
> Was mache ich hier falsch?
> Mein Ergebnis:
>  [mm]\pmat{1&2&3&1&4|&2&0&0&0\\ 0&1&0&3&2|&3&0&0&1\\ 0&0&1&4&2|&4&0&3&0\\ 0&0&0&1&3|&2&1&1&0\\ }[/mm]
>  
> Dabei dienen die | nur als Trennstrich zwischen der linken
> transponierten Matrix und der rechten ehemaligen
> Einheitsmatrix.
>  
> Gruß
>    FunDancerBhv


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de