www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis, Dimension von Unterraum
Basis, Dimension von Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis, Dimension von Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 17.11.2006
Autor: Hollo

Aufgabe
U=<{(1,1,1,0,1),(2,1,0,0,1),(0,0,1,0,0)}>
V=<{(1,1,0,0,1),(3,2,0,0,2),(0,1,1,1,1)}>
sind Unterräume des [mm] \IR^{5}. [/mm]
1.)Gebe eine Basis von U+V an
2.)Best. dim U [mm] \cap [/mm] V
3.)Gebe eine Basis von U [mm] \cap [/mm] V an

Hi zusammen!
Ich weiß das diese Aufgabe eigentlich einfach für mich sein müsste aber ich häng fest..
Also habe erst einmal gezeigt, dass die Vektoren die U und V erzeugen lub sind und dass U und V daher die angegebenen Vektoren als Basis und die Dimension 3 besitzen. Wie berechne ich damit die Basen von U+V und U [mm] \cap [/mm] V. 2.) würde ich mit der Dimensionsformel berechnen nachdem ich dim U+V berechnet habe...

Gruß hollo

        
Bezug
Basis, Dimension von Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Fr 17.11.2006
Autor: Hollo

Es fällt doch bestimmt jemandem etwas dazu ein...

Bezug
        
Bezug
Basis, Dimension von Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Fr 17.11.2006
Autor: angela.h.b.


> U=<{(1,1,1,0,1),(2,1,0,0,1),(0,0,1,0,0)}>
>  V=<{(1,1,0,0,1),(3,2,0,0,2),(0,1,1,1,1)}>
>  sind Unterräume des [mm]\IR^{5}.[/mm]
>  1.)Gebe eine Basis von U+V an
>  2.)Best. dim U [mm]\cap[/mm] V
>  3.)Gebe eine Basis von U [mm]\cap[/mm] V an
>  


> Also habe erst einmal gezeigt, dass die Vektoren die U und
> V erzeugen lub sind und dass U und V daher die angegebenen
> Vektoren als Basis und die Dimension 3 besitzen. Wie
> berechne ich damit die Basen von U+V

Du kannst die Basisvektoren von U nehmen und nachschauen, welche der Basisvektoren von V von ihnen linaer unabhängig sind. Da die Dimension Deines Ausgangsraumes =5 ist, können es höchstens zwei Vektoren sein, die Du zur Basis von U ergänzen mußt um die von U+V zu erhalten.

Gruß v. Angela

Bezug
                
Bezug
Basis, Dimension von Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:38 Sa 18.11.2006
Autor: Hollo

Hi, Vielen Dank!
Also betrachte ich jetzt die Basisvektoren von U und nehme mir einzeln einen von V dazu und prüfe auf lineare unabhängigkeit.
1.) 1*(1,1,1,0,1)+0*(2,1,0,0,1)-1*(0,0,1,0,0)=(1,1,0,0,1) =>lab
2.) 1*(1,1,1,0,1)+1*(2,1,0,0,1)-1*(0,0,1,0,0)=(3,2,0,0,2) =>lab
3.) (0,1,1,1,1) ist linear unabhängig von den Basisvektoren von V
Also nehme ich (1,1,1,0,1),(2,1,0,0,1),(0,0,1,0,0),(0,1,1,1,1) als Basis von U+V. Dim U+V ist dann 4. Dim U [mm] \cap [/mm] V ist dann 3+3-4=2.
So jetzt muss ich noch Basis von U [mm] \cap [/mm] V finden...

Bezug
        
Bezug
Basis, Dimension von Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Sa 18.11.2006
Autor: DaMenge

Hi Hollo,

für den Schnitt hast du doch schon bereits alles notwendige gerechnet.
Du hast nämlich zwei linar unabhängige Vektoren von V gefunden, die jeweils schon im Erzeugnis von U liegen, also (weil du weißt, dass die Dimension des Schnittes gleich 2 ist) hast du eine Basis des Schnittes.

wenn du übrigens nicht den Schnitt bestimmen musst, sondern nur eine Basis von U+V, dann gibt es auch ein schnelleres Verfahren, dafür schau mal HIER...
(bei deinem verfahren musst du übrigens darauf achten, dass du immer nur (untereinander) linear unabhängige Vektoren auf die rechte Seite stellst !)

viele Grüße
DaMenge

Bezug
                
Bezug
Basis, Dimension von Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Sa 18.11.2006
Autor: Hollo

Danke leute! Alle (un)klarheiten beseitigt. Den link den du angegeben hast hatte ich übrigens schon gefunden. Das Problem ist wir haben noch keine Matrizenrechnung eingeführt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de