www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis U+V bestimmen
Basis U+V bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis U+V bestimmen: Tipps
Status: (Frage) beantwortet Status 
Datum: 11:54 So 09.01.2011
Autor: Mathegirl

Aufgabe
Bestimme eine Basis von U+V und [mm] U\cap [/mm] V und eine Dimension von [mm] U\cap [/mm] V .

U= <(1,1,1,0,1),(2,1,0,0,1),(0,0,1,0,0)>
V= <(1,1,0,0,1),(3,2,0,0,2),(0,1,1,1,1)>

Also eine Basis bestimmt man ja indem man die die zeilenstufenform ermittelt! aber wie mache ich das hier? addiere ich [mm] u_1 [/mm] und [mm] v_1 [/mm] und alle weiteren und bilde dann die zeilenstufenform?

und wie bilde ich die vereinigung?

Bin für Tipps sehr dankbar!


Mathegirl!

        
Bezug
Basis U+V bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 09.01.2011
Autor: angela.h.b.


> Bestimme eine Basis von U+V und [mm]U\cap[/mm] V und eine Dimension
> von [mm]U\cap[/mm] V .

eine Dimension?

>  
> U= <(1,1,1,0,1),(2,1,0,0,1),(0,0,1,0,0)>
>  V= <(1,1,0,0,1),(3,2,0,0,2),(0,1,1,1,1)>
>  Also eine Basis bestimmt man ja indem man die die
> zeilenstufenform ermittelt! aber wie mache ich das hier?
> addiere ich [mm]u_1[/mm] und [mm]v_1[/mm] und alle weiteren und bilde dann
> die zeilenstufenform?

Hallo,

um eine Basis von U+V zu bestimmen, steck die 6 Vektoren in eine Matrix und bring diese auf ZSF.

>  
> und wie bilde ich die vereinigung?

Welche Vereinigung?

Meinst Du den Schnitt?

Überlege Dir, daß im Schnitt die Vektoren sind, die sowohl Elemente des einen als auch des anderen Unterraumes sind.
Dies führt Dich zu einem LGS.

Gruß v. Angela




Bezug
                
Bezug
Basis U+V bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 09.01.2011
Autor: Mathegirl

okay..muss ich die 6 vektoren einfach so in eine matrix bringen oder z.B. [mm] u_1 [/mm] mit [mm] v_1 [/mm] addieren?? also das insgesamt 3 vektoren dort stehen?

der durchnitt ist ja in dem fall nur:

(0,1,1,1,1) also [mm] u_1 [/mm] und [mm] v_3 [/mm] oder?

Bezug
                        
Bezug
Basis U+V bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 09.01.2011
Autor: angela.h.b.


> okay..muss ich die 6 vektoren einfach so in eine matrix
> bringen oder z.B. [mm]u_1[/mm] mit [mm]v_1[/mm] addieren?? also das insgesamt
> 3 vektoren dort stehen?

Hallo,

so, wie ich es geschrieben habe, meinte ich es auch: 6 Vektoren.

>
> der durchnitt ist ja in dem fall nur:
>  
> (0,1,1,1,1) also [mm]u_1[/mm] und [mm]v_3[/mm] oder?

Ich habe den Durchschnitt noch nicht ausgerechnet.
Der von Dir angegebene Vektor liegt aber nicht in U, also gewiß nicht im Durchschnitt von U und V.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de