Basis Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei B eine Basis des [mm] \IK-Vektorraums [/mm] V und [mm] x_1,...,x_k [/mm] linear unabhängige Vektoren aus V.
Es gibt eine k-elementige Menge B' [mm] \subset [/mm] B, so dass [mm] {x_1,...,x_k} \cup(B [/mm] \ B') wieder eine Basis von V ist. |
Hallo miteinander,
ich habe Verständnisprobleme bei dieser Aufgabe. Wie genau soll ich da argumentieren?
[mm] x_1,...,x_k [/mm] sind linear unabhängige Vektoren, d.h. sie lassen sich nicht als Linearkombination untereinander darstellen, d.h. es existiert nur die triviale Lösung 0. Zudem hat V die Basis B, d.h dim V =|B|.
Nur wie ich jetzt weiterargumentieren soll fällt mir ziemlich schwierig.
Hat jemand vllt. eine Idee???
Vielen Dank!
jacques2303
|
|
|
|
> Es sei B eine Basis des [mm]\IK-Vektorraums[/mm] V und [mm]x_1,...,x_k[/mm]
> linear unabhängige Vektoren aus V.
> Es gibt eine k-elementige Menge B' [mm]\subset[/mm] B, so dass
> [mm]{x_1,...,x_k} \cup(B[/mm] \ B') wieder eine Basis von V ist.
> Hallo miteinander,
>
> ich habe Verständnisprobleme bei dieser Aufgabe. Wie genau
> soll ich da argumentieren?
>
> [mm]x_1,...,x_k[/mm] sind linear unabhängige Vektoren, d.h. sie
> lassen sich nicht als Linearkombination untereinander
> darstellen, d.h. es existiert nur die triviale Lösung 0.
> Zudem hat V die Basis B, d.h dim V =|B|.
> Nur wie ich jetzt weiterargumentieren soll fällt mir
> ziemlich schwierig.
> Hat jemand vllt. eine Idee???
Man kann die Teilmenge $B'$ der Basis $B$ schrittweise bestimmen. (Induktion nach $k$): Zuerst kann man genau einen der Baisvektoren von $B$ durch [mm] $x_1$ [/mm] ersetzen, so dass also [mm] $\{x_1\}\cup (B\backslash\{b_1\})$ [/mm] wieder eine Basis ist, für ein geeignet gewähltes [mm] $b_1\in [/mm] B$. - Und wie, genau gesagt, wählt man [mm] $b_1$?.
[/mm]
Nun, da [mm] $\{x_1\}$ [/mm] linear unabhängig ist und $B$ eine Basis, muss [mm] $\{x_1\}\cup [/mm] B$ linear abhängig sein. Also gibt es eine nicht-triviale Nullsumme dieser Vektoren. In dieser nicht-trivialen Nullsumme müssen sowohl der skalare Koeffizient von [mm] $x_1$ [/mm] als auch derjenige mindestens eines Vektors von $B$, nennen wir ihn [mm] $b_1$, $\neq [/mm] 0$ sein. Deshalb kann man den Vektor [mm] $b_1$ [/mm] durch den Vektor [mm] $x_1$ [/mm] (und eventuell weitere Vektoren, [mm] $\neq b_1$, [/mm] aus $B$) ausdrücken. Somit ist [mm] $\{x_1\}\cup (B\backslash\{b_1\})$ [/mm] wieder eine Basis.
Nun macht man dasselbe Spiel mit [mm] $x_1$ [/mm] und der Basis [mm] $\{x_1\}\cup (B\backslash\{b_1\})$: [/mm] man erhält eine neue Basis [mm] $\{x_1,x_2\}\cup(B\backslash\{b_1,b_2\})$. [/mm] Und so weiter, und so fort, bis man bei der gewünschten Basis [mm] $\{x_1,x_2,\ldots, x_k\}\cup (B\backslash\{b_1,b_2,\ldots,b_k\})$ [/mm] angekommen ist.
Dann setzt man natürlich $B' := [mm] \{b_1,b_2,\ldots,b_k\}$ [/mm] und erklärt die Aufgabe für gelöst...
|
|
|
|