www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Basis bestimmen bzgl Sesq.linf
Basis bestimmen bzgl Sesq.linf < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis bestimmen bzgl Sesq.linf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Mi 13.05.2009
Autor: esinum

Aufgabe
Geg: V = [mm] \IC^{4} [/mm]
U = Teilraum, gegeben durch die Gleichungen
[mm] z_{1}-z_{4}=0, z_{1}+\bruch{1}{3}z_{2}+z_{3}=0 [/mm]

Man bestimme eine Basis von [mm] U^{\perp} [/mm] bzgl der Sesquilinearform
[mm] \beta(z,w)=z_{1}\overline{w_{1}}-iz_{2}\overline{w_{2}}+z_{3}\overline{w_{4}}-z_{4}\overline{w_{3}} [/mm]

Hallo ihr lieben hilfsbereiten Matheliebhaber und -liebhaberinnen =)

Ich bin gerade am Wiederholen vom Stoff vom letzten Jahr (von der Zeit wo ich nicht aufgepasst habe.. *schäm*) und hänge gerade an dieser Aufgabe.

Ich muss irgendwie jetzt Vektoren zu U (transponiert) konstruieren, die senkrecht sein müssen..
Ich weiß also im Prinzip wirklich NUR, dass die Antwort über ein LGS kommt..
oder irre ich mich da auch?
=(
Bitte Hilfe

Ich bedanke mich im Vorraus

Liebe Grüße

esi

        
Bezug
Basis bestimmen bzgl Sesq.linf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 14.05.2009
Autor: esinum

kann mir denn nun keiner helfen?

Bezug
        
Bezug
Basis bestimmen bzgl Sesq.linf: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 14.05.2009
Autor: fred97

Bestimme zunächst eine Basis von U. Soviel verrate ich Dir: dimU = 2, sei also

{ [mm] b_1,b_2 [/mm] } eine Basis von U.

Dann verschafst du dir [mm] b_3 [/mm] und [mm] b_4 [/mm] so, dass

             [mm] b_1,b_2,b_3,b_4 [/mm] linear unabh. sind

und dass

            [mm] $\beta(b_i,b_k) [/mm] = 0$ für i [mm] \in [/mm] {1,2 } und k [mm] \in [/mm] {3,4}

FRED

Bezug
                
Bezug
Basis bestimmen bzgl Sesq.linf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 14.05.2009
Autor: esinum

moment..  die basen wären dann bei mir

[mm] \vektor{0 \\ -3 \\ 1 \\ 0} \vektor{1 \\ -3 \\ 0 \\ 1} \vektor{1 \\ 0 \\ 0 \\ 0} \vektor{0 \\ 1 \\ 0 \\ 0} [/mm]

und nun? den nächsten schritt verstehe ich nicht ganz

Bezug
                        
Bezug
Basis bestimmen bzgl Sesq.linf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 14.05.2009
Autor: fred97


> moment..  die basen wären dann bei mir
>  
> [mm]\vektor{0 \\ -3 \\ 1 \\ 0} \vektor{1 \\ -3 \\ 0 \\ 1} \vektor{1 \\ 0 \\ 0 \\ 0} \vektor{0 \\ 1 \\ 0 \\ 0}[/mm]


Jetzt hast Du zwar 4 Vektoren , die l.u. sind, aber die 2. Forderung nicht erfüllen ! Die Vektoren

[mm] \vektor{1 \\ 0 \\ 0 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ 0 \\ 0} [/mm]


sind nicht die einzigen , mit denen  Du ergänzen kannst.

FRED

>  
> und nun? den nächsten schritt verstehe ich nicht ganz


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de