www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis der Haupträume bestimmen
Basis der Haupträume bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis der Haupträume bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:06 Do 30.11.2023
Autor: Euler123

Aufgabe
Gegeben sei die Matrix

[mm] B=\left(\begin{array}{cccccc} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & -3 \\ 0 & 0 & 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{array}\right) [/mm] .

Berechne jeweils eine Basis der Haupträume [mm] V_{\varphi}(2), V_{\varphi}(-3) [/mm]  bzw. [mm] V_{\varphi}(6) [/mm] von [mm] \varphi=\varphi_{B}. [/mm] Entspricht diese Basis der Situation in 2.3.7?

2.3.7: Seien k verschiedene Hauptvektoren [mm] w_{1}, \ldots, w_{k} [/mm] von [mm] \varphi [/mm] zum Eigenwert [mm] \lambda [/mm] mit Stufen [mm] m_{1} \geq m_{2} \geq \ldots \geq m_{k} \geq [/mm] 1 derart gegeben, dass die Vektoren [mm] (\varphi-\lambda \text [/mm] { id [mm] })^{m_{j}-1}\left(w_{j}\right), [/mm] j [mm] \in\{1, \ldots, k\} [/mm] genau k linear unabhängige Vektoren sind. Dann sind die Vektoren

[mm] v_{j i}:=(\varphi-\lambda \mathrm{id})^{m_{j}-i}\left(w_{j}\right) \text [/mm] { mit } j [mm] \in\{1, \ldots, k\}, [/mm] i [mm] \in\left\{1, \ldots, m_{j}\right\} [/mm]

verschieden und linear unabhängig

Stimmen meine Überlegungen zu dieser Aufgabe!?

Das charakteristische Polynom lautet [mm] (λ-6)(λ-2)^{3}(λ+3)^{2}. [/mm] Daraus ergeben sich die drei Eigenwerte 6, 2 und -3, wobei 2 dreimal und -3 zweimal vorkommt.

Die Basen (und damit die Eigenvektoren lauten):
[mm] \left(\begin{array}{c}\frac{1}{8} \\ \frac{-5}{8} \\ \frac{1}{2} \\ 0 \\ 0 \\ 1\end{array}\right), [/mm] eigenwert [mm] \lambda_{1}=6 [/mm]
[mm] \left(\begin{array}{c}\frac{-1}{5} \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right), [/mm] eigenwert [mm] \lambda_{3}=-3 [/mm]
[mm] \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, [/mm] eigenwert [mm] \lambda_{2}=2 [/mm]

Da der Eigenwert [mm] \lambda_{1}=6 [/mm] eine algebraische Vielfachheit von 1 und eine geometrische Vielfachheit von 1 hat, ist [mm] m_{1}=1 [/mm] für diesen Eigenwert.
Der Eigenwert [mm] \lambda_{2}=2 [/mm] hat eine algebraische Vielfachheit von 3 (dreifach) und eine geometrische Vielfachheit von 1 (einfach), daher ist [mm] m_{2}=1 [/mm] für diesen Eigenwert.
Der Eigenwert [mm] \lambda_{3}=-3 [/mm] hat eine algebraische Vielfachheit von 2 (zweifach) und eine geometrische Vielfachheit von 2 (zweifach), daher ist [mm] m_{3}=2 [/mm] für diesen Eigenwert.

Für [mm] \lambda_{1}=6 [/mm] und [mm] w_{1}=v_{1}: [/mm]
[mm] (\varphi-6 \cdot \mathrm{id})^{m_{1}-1}\left(v_{1}\right)=(\varphi-6 \cdot \mathrm{id})^{0}\left(v_{1}\right)=v_{1}. [/mm] Da [mm] v_{1} [/mm] bereits ein Eigenvektor ist, ist klar, dass dieser Vektor linear unabhängig ist.

Für [mm] \lambda_{2}=2 [/mm] und [mm] w_{2}=v_{2}: [/mm]
[mm] (\varphi-2 \cdot \mathrm{id})^{m_{2}-1}\left(v_{2}\right)=(\varphi-2 \cdot \mathrm{id})^{0}\left(v_{2}\right)=v_{2}. [/mm] Da [mm] v_{2} [/mm] ebenfalls ein Eigenvektor ist, ist auch dieser Vektor linear unabhängig.

Für [mm] \lambda_{3}=-3 [/mm] und [mm] w_{3}=v_{3}: [/mm]
[mm] (\varphi+3 \cdot \mathrm{id})^{m_{3}-1}\left(v_{3}\right)=(\varphi+3 \cdot \mathrm{id})^{1}\left(v_{3}\right)=(B+3 I)\left(v_{3}\right)=0. [/mm] Hier haben das Problem, dass das Ergebnis 0 ist und somit nicht linear unabhängig von [mm] \( v_{3} \) [/mm] ist.

Somit ist 2.3.7 nicht erfüllt??? - stimmt das so????

Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
Basis der Haupträume bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 03.12.2023
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de