www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis einer Matrix
Basis einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis einer Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 26.11.2011
Autor: Sogge93

Aufgabe
Ermitteln Sie je eine Basis von Kern und Bild der durch folgende Matrix beschriebenen Abbildung:

[mm] \pmat{ 3 & -6 & -5 & -3 \\ 6 & -9 & -6 & -3 \\ -5 & 3 & -1 & -2 \\ 0 & 6 & 8 & 6 } [/mm]

Hallo Community!

Ich sitzte gerade über obiger Aufgabe und weiß nicht so recht weiter. Bisher habe ich mir überlegt, dass ja der Kern einer Abbildung der Teil der Elemente ist, die auf 0 bzw. den Nullvektor abgebildet werden.
Also habe ich die Matrix wie ein homogeenes Gleichungssystem behandelt und nach einiger Rechnerei folgende Basis ermittelt

B= [mm] \vektor{0 \\ 0 \\ 1 \\ 0} [/mm] , [mm] \vektor{-1 \\ -1 \\ 0 \\ 1} [/mm]

War das bisherige Vorgehen korrekt? Wenn ja, wie ist nun der Ansatz für das Finden einer Basis des Bildes?

Danke schon im Voraus für die Hilfe :-)

        
Bezug
Basis einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 26.11.2011
Autor: MathePower

Hallo Sogge93,

> Ermitteln Sie je eine Basis von Kern und Bild der durch
> folgende Matrix beschriebenen Abbildung:
>  
> [mm]\pmat{ 3 & -6 & -5 & -3 \\ 6 & -9 & -6 & -3 \\ -5 & 3 & -1 & -2 \\ 0 & 6 & 8 & 6 }[/mm]
>  
> Hallo Community!
>  
> Ich sitzte gerade über obiger Aufgabe und weiß nicht so
> recht weiter. Bisher habe ich mir überlegt, dass ja der
> Kern einer Abbildung der Teil der Elemente ist, die auf 0
> bzw. den Nullvektor abgebildet werden.
> Also habe ich die Matrix wie ein homogeenes
> Gleichungssystem behandelt und nach einiger Rechnerei
> folgende Basis ermittelt
>  
> B= [mm]\vektor{0 \\ 0 \\ 1 \\ 0}[/mm] , [mm]\vektor{-1 \\ -1 \\ 0 \\ 1}[/mm]
>  


Der erste Basisvekor des Kerns stimmt nicht.


> War das bisherige Vorgehen korrekt? Wenn ja, wie ist nun
> der Ansatz für das Finden einer Basis des Bildes?
>


Prüfe welche Spalten der Matrix  linear unabhängig sind.


> Danke schon im Voraus für die Hilfe :-)


Gruss
MathePower

Bezug
                
Bezug
Basis einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Sa 26.11.2011
Autor: Sogge93

Notiz an mich selbst: Beim Abschreiben der Matrizen auf Vorzeichen achten :-D

Der Basisvektor ist demnach [mm] \vektor{ -1 \\ -4/3 \\ 1 \\ 0} [/mm] .

Zum Überprüfen der Spalten kann ich ja auch die bereits umgeformte Matrix verwenden, in diesem Fall [mm] \pmat{ 3 & 0 & 3 & 3 \\ 0 & 3 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm] , oder?



Bezug
                        
Bezug
Basis einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Sa 26.11.2011
Autor: Sogge93

Es sind max. zwei lin. unabhängige Vektoren zu finden. Dies stimmt ja auch mit der Dimensionsformel überein. Kann ich jetzt irgendwelche zwei der vier Vektoren als Basis verwenden?

Bezug
                        
Bezug
Basis einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Sa 26.11.2011
Autor: MathePower

Hallo Sogge93,

> Notiz an mich selbst: Beim Abschreiben der Matrizen auf
> Vorzeichen achten :-D
>  
> Der Basisvektor ist demnach [mm]\vektor{ -1 \\ -4/3 \\ 1 \\ 0}[/mm]
> .


[ok]


>  
> Zum Überprüfen der Spalten kann ich ja auch die bereits
> umgeformte Matrix verwenden, in diesem Fall [mm]\pmat{ 3 & 0 & 3 & 3 \\ 0 & 3 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }[/mm]
> , oder?
>  


Natürlich, ja.  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de