www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis eines Kerns
Basis eines Kerns < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:26 Di 25.07.2006
Autor: Mukkelmann

Aufgabe
Gegeben sei

[mm] \begin{pmatrix} 1 & 1 & 1 & 0 &1 \\ 1 & 1 & 0 & 1 &1 \\ 1 & 1 & 1 & 1 &1 \end{pmatrix} \in \IF_{2}^{3x5}. [/mm]

Gib eine Basis des Unterraums {x [mm] \in \IF_{2}^{5x1} [/mm] : Ax = 0} (i.e. des Kerns von A) an.

Als Kern habe ich folgende Lösung:

[mm] \begin{pmatrix} 1 & 1 & 0 & 0 &1 \\ 0 & 0 & 1 & 0 &0 \\ 0 & 0 & 0 & 1 &0 \end{pmatrix} [/mm]

Und nach auflösen habe ich folgende Vektoren, die den Unterraum (also den Kern) aufspannen können:

(1, 1, 0, 0 , 0), (1, 0, 0, 0 , 1), (0,1, 0, 0 , 1)

In der Musterlösung wurden jedoch folgende Vektoren als Basis für A angegeben:

[mm] \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} [/mm]

und

[mm] \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} [/mm]

Es wäre toll, wenn mir jemand verraten könnte, ob jede beliebige Konstellation der gefundenen Vektoren als Basis des kerns fungieren können, oder warum ausgerechnet o.a. Lösung angegeben wurde.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis eines Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Di 25.07.2006
Autor: Leopold_Gast

Bei den von dir gefundenen Vektoren gilt:

[mm]\text{eins} \, + \, \text{zwei} \ = \ \text{drei}[/mm]

Was heißt das?

Bezug
                
Bezug
Basis eines Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:35 Di 25.07.2006
Autor: Mukkelmann

Das der erste und zweite Vektor als Angabe der Basis genügen. Allerdings stünde es mir dann doch auch frei, die Vektoren 2 und 3 zu wählen, da v2+v3 = v1.

Ich denke, es geht hier um die Begriffsbestimmung lineare Unabhängigkeit, richtig? Wenn ja, auf welchem Weg ermittle ich die l.u. der gefundenen Vektoren (und weiß somit welcher Vektor nicht als Basisvektor dazugehört)?

Bezug
                        
Bezug
Basis eines Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 25.07.2006
Autor: DaMenge

Hi,

wie schon gesagt wurde : du hast eine Erzeugendensystem des KErns gefunden und musst jetzt noch einen linear abhängigen Vektor streichen um eine Basis zu bekommen.
Wie du richtig festgestellt hast, ist es HIER egal, welchen Vektor du streichst, denn jeder der Vektoren ist als summe der beiden anderen darstellbar.
(Aber es ist doch auch klar, dass eine Basis nicht eindeutig ist, oder?)

hier konnte man das durch Hinsehen lösen - wenn es allgemeiner oder komplizierter ist, kann man es trotzdem auch systematisch machen.
Wenn du wissen willst, wie - das habe ich HIER schonmal geschrieben..

viele Grüße
DaMenge

Bezug
                                
Bezug
Basis eines Kerns: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 26.07.2006
Autor: Mukkelmann

Vielen Dank, das hat mir sehr geholfen! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de