www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Basis finden
Basis finden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis finden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:24 Di 18.05.2010
Autor: stk66

Aufgabe
Seien [mm] v_{1}=\vektor{2 \\ -1 \\ 3 \\ 0}, v_{2}=\vektor{3 \\ 1 \\ 4 \\ 0} \in \IR^{4}. [/mm] Zeige, dass [mm] (v_{1},v_{2}) [/mm] ein linear unabhängiges System von Vektoren von [mm] \IR^{4} [/mm] ist, und ergänze es zu einer Basis von [mm] \IR^{4}. [/mm]

Die lineare Unabhängigkeit war schnell gezeigt, aber beim finden der Basis habe ich noch Probleme.
Gesucht sind ja zwei weitere Vektoren [mm] v_{3} [/mm] und [mm] v_{4}, [/mm] die zusammen mit [mm] v_{1} [/mm] und [mm] v_{2} [/mm] linear unabhängig und gleichzeitig ein Erzeugendensystem von [mm] \IR^{4} [/mm] sind.
Muss ich hier jetzt geschickt einen der beiden Vektoren "raten" und dann den zweiten dazu passend ausrechnen?
Ich hatte das ganze mal mit [mm] v_{3}=\vektor{0 \\ 0 \\ 0 \\ 1} [/mm] versucht und [mm] v_{4} =\vektor{a \\ b \\ c \\ d} [/mm] gesetzt. Dann versucht das daraus entstehende Gleichungssystem für die lineare Unabhägigkeit zu lösen und hinterher Werte für a,b,c,d einzusetzen. (Habe den Ansatz aus einer anderen Aufgabe hier im Forum, allerdings war dort nur 1 weiterer Vektor gesucht)
Allerdings hänge ich hier jetzt fest. Ist mein Ansatz mit dem gewählten [mm] v_{3} [/mm] richtig? Nach was genau muss ich das LGS auflösen und kann ich beliebige Werte für a,b,c,d einsetzen?

        
Bezug
Basis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Di 18.05.2010
Autor: angela.h.b.


> Seien [mm]v_{1}=\vektor{2 \\ -1 \\ 3 \\ 0}, v_{2}=\vektor{3 \\ 1 \\ 4 \\ 0} \in \IR^{4}.[/mm]
> Zeige, dass [mm](v_{1},v_{2})[/mm] ein linear unabhängiges System
> von Vektoren von [mm]\IR^{4}[/mm] ist, und ergänze es zu einer
> Basis von [mm]\IR^{4}.[/mm]
>  Die lineare Unabhängigkeit war schnell gezeigt, aber beim
> finden der Basis habe ich noch Probleme.
>  Gesucht sind ja zwei weitere Vektoren [mm]v_{3}[/mm] und [mm]v_{4},[/mm] die
> zusammen mit [mm]v_{1}[/mm] und [mm]v_{2}[/mm] linear unabhängig und
> gleichzeitig ein Erzeugendensystem von [mm]\IR^{4}[/mm] sind.
>  Muss ich hier jetzt geschickt einen der beiden Vektoren
> "raten" und dann den zweiten dazu passend ausrechnen?

Hallo,

man kann das verschieden machen.

Der Basisaustauschsatz garantiert einem, daß man in der Standardbasis des [mm] \IR^4 [/mm] zwei der Vektoren durch [mm] v_1 [/mm] und [mm] v_2 [/mm] so ersetzen kann, daß man eine Basis des [mm] \IR^4 [/mm] behält.
Andersrum: Du kannst [mm] v_1 [/mm] und [mm] v_2 [/mm] mit zwei Standardbasisvektoren zu einer Basis des [mm] \IR^4 [/mm] ergänzen - Du mußt bloß noch rausfinden, durch welche.

>  Ich hatte das ganze mal mit [mm]v_{3}=\vektor{0 \\ 0 \\ 0 \\ 1}[/mm]
> versucht

Ja, der hüpft einem wirklich in den Arm.

Nun könntest Du probieren, welcher der anderen paßt.

Du kannst aber auch so vorgehen:

Lege [mm] v_1 [/mm] und [mm] v_2 [/mm] in eine Matrix, bring sie auf Zeilenstufenform.
Nun schiebst Du "liegende" Einheitsvektoren so ein, daß Du den Rang 4 erhältst.

Wiederaufgerichtet sind dies die Vektoren, mit denen Du [mm] v_1 [/mm] und [mm] v_2 [/mm] zu einer Basis des [mm] \IR^4 [/mm] ergänzen kannst.

Gruß v. Angela

Bezug
                
Bezug
Basis finden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 18.05.2010
Autor: stk66

Ich habe jetzt [mm] v_{3}=\vektor{0 \\ 0 \\ 1 \\ 0} [/mm] und [mm] v_{4}=\vektor{0 \\ 0 \\ 0 \\ 1} [/mm] gewählt.
Daraus ergibt sich folgende Matrix: [mm] \pmat{ 2 & 3 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 3 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 } \to \pmat{ 1 & 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 }. [/mm]
[mm] \Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=0 \Rightarrow (v_{1},v_{2},v_{3},v_{4}) [/mm] sind linear unabhängig.
Korrekt?


Bezug
                        
Bezug
Basis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Di 18.05.2010
Autor: angela.h.b.

Hallo,

ja, richtig.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de