www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis mit GJA
Basis mit GJA < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis mit GJA: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:08 So 14.01.2007
Autor: BWLDino

Aufgabe
Bestimmen Sie eine Basis der Lösungsmenge des homogenen Gleichungssystems mit dem Gauß-Jordan-Algorithmus! Geben Sie zwei weitere Basen an!
[mm] \pmat{ 2 & 0 & \wurzel{7} & 0 & 5 \\ 3 & 0 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 2 }*\vec{x}=\vektor{0 \\ 0 \\ 0} [/mm]

So, wenn ich das mit dem GJA ausrechen bekomme ich als Endschema:
-18   0    0    0   0
0     0    0    0   -9
0     0  [mm] -18*\wurzel{7} [/mm]   0   0

Ausgezeichnet wurden die drei Elemente, die jetzt noch [mm] \not= [/mm] 0 sind
Aber wie muss ich das Endschema jetzt interpretieren das ich zunächst auf eine Basis komme und dann noch zwei weitere finden kann?

MfG Dino

        
Bezug
Basis mit GJA: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 14.01.2007
Autor: DaMenge

Hallo,


> So, wenn ich das mit dem GJA ausrechen bekomme ich als
> Endschema:
>  -18   0    0    0   0
>   0     0    0    0   -9
>   0     0  [mm]-18*\wurzel{7}[/mm]   0   0
>  

Also ich hab das jetzt NICHT nachgerechnet, aber du musst ja schon Zeilenstufenform erreichen - dies bedeutet hier also noch eine Vertauschung der Zeilen (was die reihenfolge der Variablen aber nicht aendert), also als Matrix geschrieben:
[mm] $\pmat{-18&0&0&0&0\\0&0&-18*\wurzel{7}&0&0\\0&0&0&0&-9}*\vektor{x_1\\x_2\\x_3\\x_4\\x_5}=\vektor{0\\0\\0}$ [/mm]

du siehst also, dass nur [mm] $x_1=x_3=x_5=0$ [/mm] eindeutig festgelegt sind, also waere ein allgemeiner Loesungsvektor doch: (s und t beliebig:)
[mm] $\vektor{0\\s\\0\\t\\0}=s*\vektor{0\\1\\0\\0\\0}+t*\vektor{0\\0\\0\\1\\0}$ [/mm]

und hieran siehst du schon zwei linear unabhaengige Vektoren, die den Loesungsraum erzeugen...
jetzt such dir noch zwei andere Basen, die denselben raum erzeugen...

viele Gruesse
DaMenge

Bezug
                
Bezug
Basis mit GJA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 14.01.2007
Autor: BWLDino

Vielen Dank für die schnelle Antwort...
wie kann ich daraus jetzt zwei weiter Basen erzeugen?
Einfach statt der 1 eine andere Zahl einsetzen? Also so:
[mm] s*\vektor{0 \\ 5 \\ 0 \\ 0 \\ 0}+t*\vektor{0 \\ 0 \\ 0 \\ 5 \\ 0} [/mm] und [mm] s*\vektor{0 \\ 8 \\ 0 \\ 0 \\ 0}+t*\vektor{0 \\ 0 \\ 0 \\ 8 \\ 0} [/mm] ??

Bezug
                        
Bezug
Basis mit GJA: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 14.01.2007
Autor: DaMenge

Hi,

ja das waeren zwei weitere Basen, aber ein wenig langweilige
;-)

eine weitere waere doch auch :
$ [mm] s'\cdot{}\vektor{0 \\ 2 \\ 0 \\ 1 \\ 0}+t'\cdot{}\vektor{0 \\ 0 \\ 0 \\ 1 \\ 0} [/mm] $

und sowas eben...

viele Gruesse
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de