www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis und dualraum
Basis und dualraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis und dualraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 22.04.2006
Autor: AriR

Aufgabe
http://www.math.uni-muenster.de/reine/u/reinekem/ss06_la2/blatt03.pdf

Aufgabe 2a)

(frage zuvor nicht gestellt)
Hey Leute ich hoffe ihr nehmt es mir nicht übel, dass ich den kompletten link gepostet habe, doch so geht es viel schneller und ich bekomme das mit den Sternchen nicht vernünftig hin :)

Naja zur eigentlich Aufgabe. Ich versuche Gerade zu zeigen, dass Ann(U) eine Teilmenge von <...> ist.

habe dies folgendermaßen gemacht:

z.z.: [mm] \forall \phi\in [/mm] U [mm] \Rightarrow \phi\in [/mm] <...>
Bew: Sei [mm] \phi\in [/mm] U
1.Annahme: [mm] \phi\in [/mm]
                    [mm] \phi(u)=\mu_1*v_1\*(u)+...+\mu_k*v_k\*(u) [/mm]
                              = [mm] \mu_1*\lambda_1+....+\mu_k*\lambda_k\not= [/mm] 0 (im
                                                                                                   Algemeinen)

2.  [mm] \phi\in [/mm]
     [mm] \phi(u)=\mu_{k+1}*v_{k+1}\*(u)+...+\mu_n*v_n\*(u) [/mm]
               = [mm] \mu_{u+1}*0+...+\mu_n*0=0 \forall\mu_i,\lambda_i [/mm] \    [mm] k+1\le i\le [/mm] n

ist das so richtig? hab manche begründungen nicht hier schreiben können, die bei mir über den "=" stehen. habe eigentlich nur manchmal u als linearkombination der basisvektoren von U geschrieben und die def. der dualenbasis ausgenutzt.

Wäre nett, wenn mir einer von euhc helfen könnte. Gruß Ari =)

        
Bezug
Basis und dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Mo 24.04.2006
Autor: mathiash

Hallo und guten Morgen,


> Naja zur eigentlich Aufgabe. Ich versuche Gerade zu zeigen,
> dass Ann(U) eine Teilmenge von <...> ist.
>  
> habe dies folgendermaßen gemacht:
>  
> z.z.: [mm]\forall \phi\in[/mm] U [mm]\Rightarrow \phi\in[/mm] <...>
>  Bew: Sei [mm]\phi\in[/mm] U

Du meinst doch hier Ann(U), oder ?

>  1.Annahme: [mm]\phi\in[/mm]

Vermutlich Indexfehler:

Hier willst Du also von der Gleichung [mm] Ann(U)= [/mm]
die [mm] ''\supseteq'' [/mm] zeigen. Also musst Du nachweisen, dass aus der Annahme auch [mm] \phi\in [/mm] Ann(U) folgt.

>                      
> [mm]\phi(u)=\mu_1*v_1\*(u)+...+\mu_k*v_k\*(u)[/mm]

Fortlaufender Indexfehler, s.o.

>                                =
> [mm]\mu_1*\lambda_1+....+\mu_k*\lambda_k\not=[/mm] 0 (im
> Algemeinen)
>  
> 2.  [mm]\phi\in[/mm]
>       [mm]\phi(u)=\mu_{k+1}*v_{k+1}\*(u)+...+\mu_n*v_n\*(u)[/mm]
>                 = [mm]\mu_{u+1}*0+...+\mu_n*0=0 \forall\mu_i,\lambda_i[/mm]
> \    [mm]k+1\le i\le[/mm] n
>  

Also arbeiten wir mit der korrigierten 1. Annahme weiter:
Es ist dann also

[mm] \phi=\sum_{j=k+1}^n\mu_jv_j^{\star} [/mm]

und da die [mm] v_j^{\star},j\geq [/mm] k+1 auf [mm] U= [/mm] per def. der dualen Basis gleich null sind, ist dies
auch fuer jede Linearkombination derer der Fall.

Hilft's weiter ?

Gruss,

Mathias

Bezug
                
Bezug
Basis und dualraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 24.04.2006
Autor: AriR

jo geht wohl.. ich hab das doch anders gemacht und zwar habe ich gezeigt, dass jedes element aus dem annulator [mm] \cap [/mm] erzeugt wird und wenn man diesen Spann um ein element aus [mm] v_1-v_k [/mm] erweitert, entsteht im allgemeinen kein element mehr aus dem annulator. hoffe das war so richtig, musste den zettel heute abgeben :)

Gruß Ari

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de