www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basis von Kern(f) und Bild(f)
Basis von Kern(f) und Bild(f) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Kern(f) und Bild(f): "Basis", "Kern", "Bild"
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 30.11.2009
Autor: donald

Aufgabe
Sei V ein K-Vektorraum mit V = [mm] \mathbb{R}^3 [/mm] und sei der Endomorphismus f: V [mm] \to [/mm] V definiert durch f(x,y,z) = (x+2x+2z, y, 3x+z).
Bestimmen Sie eine Basis von Kern(f) und Bild(f).

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe leider keine Ahnung wie ich genau vorgehen muss um die Basen auszurechnen. Außerdem handelt es sich hier um einen Endomorphismus also eine Abb. der Form f(x) = x. Es ist es dann nicht so, dass auch nur der Nullvektor auf Null abgebildet wird??

Danke für eure Hilfe!

        
Bezug
Basis von Kern(f) und Bild(f): Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 30.11.2009
Autor: uliweil

Hallo donald,

da musst Du aber etwas schrecklich missverstanden haben!
Ein Endomorphismus ist allgemein eine lineare Abbildung (Homomorphismus) eines Vektorraumes in sich; das von Dir angegebene f(x) = x ist lediglich ein Beispiel (die Identität) für einen Endomorphismus, aber mehr nicht.
Der in der Aufgabenstellung vorgegebene Endomorphismus sieht ganz anders aus.
Nun wie bestimmt man Kef und Bif?
Der Kern von f ist nach Definition die Menge der x, die von f auf 0 abgebildet werden, also eigentlich die Lösung der Gleichung f(x) = 0. Da der Kern ein Unterraum von V ist, hat er eine Basis, sofern er nicht nur die 0 enthält. Die ergibt sich als linear unabhängige Menge aus eben diesem Gleichungssystem.
Das Bild von f ist bekanntlich die Menge der Funktionswerte f(x) mit x [mm] \in [/mm] V.
Auch das Bild ist ein Unterraum von V. Bei der Bestimmung kann man auch ausnutzen, dass dim(Bild(f)) + dim(Kern(f)) = n ist, also die bei Kef bestimmten Basisvektoren nur zu einer Basis von V ergänzt werden müssen; diese bilden dann die Basis von Bif.
Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de