www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von Untervektorräumen
Basis von Untervektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Untervektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Sa 12.12.2009
Autor: Salamence

Aufgabe
Zeigen Sie, dass man wie folgt eine Basis für den Untervektorraum [mm] V:=span(v_{1},...,v_{n}) [/mm] mit [mm] v_{i}\in K^{m} [/mm] bestimmen kann:
Schreibe die Vektoren [mm] v_{1} [/mm] bis [mm] v_{n} [/mm] in eine Matrix und zwar als Zeilen. Überführe die Matrix in ihre reduzierte Zeilenstufenform. Jene Zeilen mit führenden Einträgen bilden eine Basis von V.

So wirklich ne Idee, wie man an die Aufgabe herangehen soll, habe ich nicht.
Eine Basis muss ja 1. überhaupt im Aufspann drin sein (also die Elemente der Basis). Dies ist trivial, da die Vektoren ja durch elementare Zeilenoperationen (also Addition und skalare Multiplikation hervorgehen); 2. sie sollten linear unabhängig sein. Dies ist auch trivial; 3. die Mächtigkeit der Basis muss der Dimension entsprechen.
Damit sollte es eine Basis sein, allerdings habe ich keine Ahnung, wie ich den 3. Punkt zeige.

        
Bezug
Basis von Untervektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Sa 12.12.2009
Autor: Merle23


> Zeigen Sie, dass man wie folgt eine Basis für den
> Untervektorraum [mm]V:=span(v_{1},...,v_{n})[/mm] mit [mm]v_{i}\in K^{m}[/mm]
> bestimmen kann:
>  Schreibe die Vektoren [mm]v_{1}[/mm] bis [mm]v_{n}[/mm] in eine Matrix und
> zwar als Zeilen. Überführe die Matrix in ihre reduzierte
> Zeilenstufenform. Jene Zeilen mit führenden Einträgen
> bilden eine Basis von V.

>  So wirklich ne Idee, wie man an die Aufgabe herangehen
> soll, habe ich nicht.
>  Eine Basis muss ja 1. überhaupt im Aufspann drin sein
> (also die Elemente der Basis). Dies ist trivial, da die
> Vektoren ja durch elementare Zeilenoperationen (also
> Addition und skalare Multiplikation hervorgehen); 2. sie
> sollten linear unabhängig sein. Dies ist auch trivial; 3.
> die Mächtigkeit der Basis muss der Dimension entsprechen.
> Damit sollte es eine Basis sein, allerdings habe ich keine
> Ahnung, wie ich den 3. Punkt zeige.

Folgt aus 1) und 2), denn eine Basis ist ein linear unabhängiges Erzeugendensystem.

LG, Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de