www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basistransformationsmatrix
Basistransformationsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformationsmatrix: Aufgabe/ Tipp für Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 12:06 Di 18.05.2010
Autor: bAbUm

Guten Tag.

Ich habe eine Aufgabe gegeben, weiß aber nicht wie ich vorgehen soll. Mein Script hilft mir leider auch nicht weiter.

Die lineare Abbildung [mm] \gamma [/mm] ist bzg. der Standardbasis durch die Abbildungsmatrix
A= 1/2 [mm] \pmat{ 7 & 10 \\ -5 & -7 } [/mm] gegeben.
Außerdem ist mit [mm] b^1=(-1,1)^T [/mm] und [mm] b^2=(-3,2)^T [/mm] eine Basis B= { [mm] b^1, b^2 [/mm] } des [mm] R^2 [/mm] gegeben.

a) Geben sie die Basistransformationsmatrix an, die Vektoren
[mm] x=a_1b^1 [/mm] + [mm] a_2b^2 [/mm] = [mm] (a_1, a_2)^T_B [/mm] dargestellt bzg. der Basis B in die entsprechende Darstellung [mm] x=\beta_1e^1 [/mm] + [mm] \beta_2e^2 =(\beta_1, \beta_2)^T [/mm] transformiert.

Was ist hier zu tun?

Vielen Dank schon einmal von mir!!


        
Bezug
Basistransformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Di 18.05.2010
Autor: nooschi


> Guten Tag.
>  
> Ich habe eine Aufgabe gegeben, weiß aber nicht wie ich
> vorgehen soll. Mein Script hilft mir leider auch nicht
> weiter.
>  
> Die lineare Abbildung [mm]\gamma[/mm] ist bzg. der Standardbasis
> durch die Abbildungsmatrix
> A= 1/2 [mm]\pmat{ 7 & 10 \\ -5 & -7 }[/mm] gegeben.
> Außerdem ist mit [mm]b^1=(-1,1)^T[/mm] und [mm]b^2=(-3,2)^T[/mm] eine Basis
> B= [mm]{ b^1, b^2 }[/mm] des [mm]R^2[/mm] gegeben.
>  
> a) Geben sie die Basistransformationsmatrix an, die
> Vektoren
> [mm]x=a_1b^1[/mm] + [mm]a_2b^2[/mm] = [mm](a_1, a_2)^T_B[/mm] dargestellt bzg. der
> Basis B in die entsprechende Darstellung [mm]x=\beta_1e^1[/mm] +
> [mm]\beta_2e^2 =(\beta_1, \beta_2)^T[/mm] transformiert.
>  
> Was ist hier zu tun?

erstmal die Aufgabe genau lesen und herausfiltern was die Aufgabe ist: Wir suchen ein Matrix [mm] (m_{i,j})_{1\leq i,j \leq 2} [/mm] sodass folgende Gleichung erfüllt ist:

[mm] \pmat{ m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} }\cdot \vektor{a_1 \\ a_2}=\vektor{\beta_1 \\ \beta_2} [/mm]

und jetzt halt bisschen rumrechnen:
[mm] \beta_1\vektor{1 \\ 0}+\beta_2\vektor{0 \\ 1}=\vektor{\beta_1 \\ \beta_2}=\pmat{ m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} }\cdot \vektor{a_1 \\ a_2}=\pmat{ m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} }\cdot a_1 \vektor{1 \\ 0}+\pmat{ m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} }\cdot a_2 \vektor{0 \\ 1}=a_1\vektor{ m_{1,1} \\ m_{2,1} }+a_2\pmat{ m_{1,2} \\ m_{2,2} } [/mm]

also:
[mm] \beta_1\vektor{1 \\ 0}+\beta_2\vektor{0 \\ 1}=a_1\vektor{ m_{1,1} \\ m_{2,1} }+a_2\pmat{ m_{1,2} \\ m_{2,2} } [/mm]

um jetzt die [mm] m_{ij} [/mm] zu berechnen, ist es am sinnvollsten für x die Vektoren [mm] \vektor{-1 \\ 1}, \vektor{-3 \\ 2} [/mm] einzusetzen (die Rechnung wird dann sehr einfach). Dann berechnest du zuerst die dazugehörigen [mm] $\beta$'s [/mm] und $a$'s, setzt die in die Gleichung ein und schon bekommst du die [mm] m_{ij}. [/mm]


Ich habe das jetzt extra so aufgeschrieben, wie du vielleicht selber hättest draufkommen sollen. Allgemein berechnet man einen Basiswechsel so, dass man die alte Basis bzgl. der neuen aufschreibt (also [mm] \vektor{-1\\1}=\lambda_1\vektor{1\\0}+\lambda_2\vektor{0\\1} [/mm] ...) und die [mm] \lambda [/mm] dann in die Spalten der Basiswechselmatrix aufschreibt.



Bezug
                
Bezug
Basistransformationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 18.05.2010
Autor: bAbUm

> also:
>  [mm]\beta_1\vektor{1 \\ 0}+\beta_2\vektor{0 \\ 1}=a_1\vektor{ m_{1,1} \\ m_{2,1} }+a_2\pmat{ m_{1,2} \\ m_{2,2} }[/mm]
>  
> um jetzt die [mm]m_{ij}[/mm] zu berechnen, ist es am sinnvollsten
> für x die Vektoren [mm]\vektor{-1 \\ 1}, \vektor{-3 \\ 2}[/mm]
> einzusetzen (die Rechnung wird dann sehr einfach). Dann
> berechnest du zuerst die dazugehörigen [mm]\beta[/mm]'s und [mm]a[/mm]'s,
> setzt die in die Gleichung ein und schon bekommst du die
> [mm]m_{ij}.[/mm]

mal sehen ob ich das verstanden habe:
so zb? :
für [mm] \beta_1=-3 [/mm] und [mm] \beta_2=2 [/mm]
[mm] -3\pmat{ 1 \\ 0 } [/mm] + [mm] 2\pmat{ 0 \\ 1 } [/mm] = [mm] a_1 \pmat{ 3,5 \\ -2,5 } [/mm] + [mm] a_2\pmat{ 5 \\ 3,5 } [/mm]

[mm] \pmat{ -3 \\ 2 } [/mm] = [mm] a_1 \pmat{ 3,5 \\ -2,5 } [/mm] + [mm] a_2\pmat{ 5 \\ 3,5 } [/mm]
folgt:
[mm] a_1=2 [/mm] und [mm] a_2=-2 [/mm]

Bezug
                        
Bezug
Basistransformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Di 18.05.2010
Autor: nooschi

ähm nein, das hast du nicht richtig verstanden. Ich habe geschrieben, dass du für x die Punkte [mm] \vektor{-1\\1}, \vektor{-3\\2} [/mm] einsetzen sollst, wobei wir x so gesetzt haben (siehe deine Aufgabe!):
[mm] x=a_1\cdot b_1+a_2\cdot b_2 [/mm]
[mm] x=\beta_1\cdot e_1+\beta_2\cdot e_2 [/mm]

[mm] \Rightarrow [/mm]
[mm] \vektor{-1\\1}=a_1\cdot \vektor{-1\\1}+a_2\cdot \vektor{-3\\2} [/mm]
[mm] \vektor{-1\\1}=\beta_1\cdot \vektor{1\\0}+\beta_2\cdot \vektor{0\\1} [/mm]

und dann noch für [mm] \vektor{-3\\2}... [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de