www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basiswechsel, Eigenwerte
Basiswechsel, Eigenwerte < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel, Eigenwerte: Ansatz
Status: (Frage) beantwortet Status 
Datum: 16:58 Di 21.03.2017
Autor: Franzi17

Aufgabe
Seien A,B ∈ Matm(R) und T ∈ GLm(C) mit TAT^−1 = B.

a) Sei T = U + iV mit U,V ∈ Matm(R) und [mm] i^2 [/mm] = −1. Zeigen Sie, dass UA = BU und V A = BV .

b) Zeigen Sie, dass es für jedes Polynom P(X) [mm] ∈R[X]\{0} [/mm] ein λ ∈R mit P(λ) ungleich 0 gibt.

c) Beweisen Sie, dass es S ∈ GLm(R) mit SAS^−1 = B gibt.

Hallo,
ich bitte dringend um Hilfe, bin mit dieser Aufgabe ziemlich überfordert.

Bei a) war mein Gedanke dass ich

BU = (TAT^-1)U so umformen können müsste, dass ich auf UA komme.
Mit [mm] T^1 [/mm] = [mm] (U^1 [/mm] + iV^-1)
jedoch führt das ins Nirgendwo und ich komme nie auf das richtige Ergebnis.


Bei b) scheitere ich schon der Fragestellung. Mir ist nicht ganz genau klar, was damit gemeint ist. Wenn P(/Lambda) ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem Polynom?!

Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T sowohl als eine Matrix(C), als auch eine Matrix(R) darstellen kann. Aber mir fehlt jede Idee für einen allgemeinen Beweis.

Vielen Dank für die Hilfe!

        
Bezug
Basiswechsel, Eigenwerte: zu a)
Status: (Antwort) fertig Status 
Datum: 07:15 Mi 22.03.2017
Autor: angela.h.b.


> Seien A,B ∈ Matm(R) und T ∈ GLm(C) mit TAT^−1 = B.
>
> a) Sei T = U + iV mit U,V ∈ Matm(R) und [mm]i^2[/mm] = −1.
> Zeigen Sie, dass UA = BU und V A = BV .

Hallo,

es ist  TAT^−1 = B,
also TA=BT.

Nun setze T=U+iV ein und ziehe Deine Schlüsse.

LG Angela


>
> b) Zeigen Sie, dass es für jedes Polynom P(X) [mm]∈R[X]\{0}[/mm]
> ein λ ∈R mit P(λ) ungleich 0 gibt.
>  
> c) Beweisen Sie, dass es S ∈ GLm(R) mit SAS^−1 = B
> gibt.
>  Hallo,
> ich bitte dringend um Hilfe, bin mit dieser Aufgabe
> ziemlich überfordert.
>
> Bei a) war mein Gedanke dass ich
>
> BU = (TAT^-1)U so umformen können müsste, dass ich auf UA
> komme.
> Mit [mm]T^1[/mm] = [mm](U^1[/mm] + iV^-1)
> jedoch führt das ins Nirgendwo und ich komme nie auf das
> richtige Ergebnis.
>
>
> Bei b) scheitere ich schon der Fragestellung. Mir ist nicht
> ganz genau klar, was damit gemeint ist. Wenn P(/Lambda)
> ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem
> Polynom?!
>  
> Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T
> sowohl als eine Matrix(C), als auch eine Matrix(R)
> darstellen kann. Aber mir fehlt jede Idee für einen
> allgemeinen Beweis.
>
> Vielen Dank für die Hilfe!


Bezug
        
Bezug
Basiswechsel, Eigenwerte: zu b)
Status: (Antwort) fertig Status 
Datum: 14:23 Mi 22.03.2017
Autor: angela.h.b.


> b) Zeigen Sie, dass es für jedes Polynom P(X) [mm]∈R[X]\setminus\{0\}[/mm]
> ein λ ∈R mit [mm] P(\lambda)\not=0 [/mm] gibt.
>  

> Bei b) scheitere ich schon der Fragestellung. Mir ist nicht
> ganz genau klar, was damit gemeint ist. Wenn P(/Lambda)
> ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem
> Polynom?!

Hallo,

nein, dann ist [mm] \lambda [/mm] natürlich kein Eigenwert.
Von Eigenwerten steht in Aufgabe b) auch nichts, auch nicht  davon, daß P irgendetwas mit A oder B zu tun hat.
Da steht einfach nur, daß es für ein Polynom P aus [mm] \IR[X], [/mm] welches nicht das Nullpolynom ist, eine reelle Zahl [mm] \lambda [/mm] gibt mit [mm] P(\lambda)\not=0. [/mm]
Es gibt also eine Stelle, welche nicht Nullstelle ist.
Wie Du das löst, kommt darauf an, was über Polynome schon dran war.

LG Angela

>  
> Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T
> sowohl als eine Matrix(C), als auch eine Matrix(R)
> darstellen kann. Aber mir fehlt jede Idee für einen
> allgemeinen Beweis.
>
> Vielen Dank für die Hilfe!


Bezug
                
Bezug
Basiswechsel, Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Do 23.03.2017
Autor: Franzi17

Hallo,
Vielen Dank für die Antwort.
A.) Hat geklappt.
B) war über den Satz, dass ein Polynom endlich viele Nullstellen besitzt möglich
Und C) hat sich aus a) und b) ergeben.
Danke für die Hilfe!

Bezug
                        
Bezug
Basiswechsel, Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Do 23.03.2017
Autor: Franzi17

Habe versucht die Frage als bewntwortet zu kennzeichnen, hat leider nicht geklappt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de