www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Basiswechsel v. Exponentialfkt
Basiswechsel v. Exponentialfkt < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel v. Exponentialfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 02.11.2020
Autor: hase-hh

Aufgabe
Schreibe folgende Exponentialfunktionen mithilfe der genannten Basis.

[mm] 2^x [/mm]    mit  Basis e

[mm] 3^x [/mm]   mit Basis  10.

Moin Moin,

gefunden habe ich:

[mm] a^x [/mm] = [mm] e^{ln(a)*x} [/mm]


[mm] 2^x [/mm] = [mm] e^{ln(2)*x} [/mm]



Aber was mache ich mit [mm] 3^x [/mm] ?




Danke & Gruß!


        
Bezug
Basiswechsel v. Exponentialfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 02.11.2020
Autor: Event_Horizon

Hallo!

Schau dir mal die Herleitung an:

[mm] $a^x= e^\log_e(a^x)$ [/mm]

Jetzt gilt ganz allgemein::  [mm] \log_b(a^x)=x*\log_b(a), [/mm] und daher

[mm] $a^x= e^\log_e(a^x)=e^{x*\log_e(a)}$ [/mm]

Bekommst du es damit hin?



Bezug
                
Bezug
Basiswechsel v. Exponentialfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:14 Di 03.11.2020
Autor: hase-hh


> Hallo!
>  
> Schau dir mal die Herleitung an:
>  
> [mm]a^x= e^\log_e(a^x)[/mm]
>  
> Jetzt gilt ganz allgemein::  [mm]\log_b(a^x)=x*\log_b(a),[/mm] und
> daher
>  
> [mm]a^x= e^\log_e(a^x)=e^{x*\log_e(a)}[/mm]
>  
> Bekommst du es damit hin?
>  

Moin, also:

[mm] 3^x [/mm] = [mm] 10^{log_{10}(3^x)} [/mm] = [mm] 10^{x*log_{10}(3)} [/mm]  

Danke.


Bezug
        
Bezug
Basiswechsel v. Exponentialfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 02.11.2020
Autor: HJKweseleit


> gefunden habe ich:
>  
> [mm]a^x[/mm] = [mm]e^{ln(a)*x}[/mm]
>  

Setze für a eine 3 ein.

Bezug
                
Bezug
Basiswechsel v. Exponentialfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Di 03.11.2020
Autor: fred97


> > gefunden habe ich:
>  >  
> > [mm]a^x[/mm] = [mm]e^{ln(a)*x}[/mm]
>  >  
> Setze für a eine 3 ein.


Verlangt war aber Basis 10.

Bezug
                        
Bezug
Basiswechsel v. Exponentialfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 03.11.2020
Autor: HJKweseleit


> > > gefunden habe ich:
>  >  >  
> > > [mm]a^x[/mm] = [mm]e^{ln(a)*x}[/mm]
>  >  >  
> > Setze für a eine 3 ein.
>
>
> Verlangt war aber Basis 10.

Sorry, hab ich übersehen.



Bevor du dir Formeln merkst und diese entweder bald vergisst oder durcheinander bringst, mach so:

[mm] 3^x=10^y, [/mm] y gesucht.

Jetzt mit ln:  x ln(3)=y ln(10) und somit
               y=x ln(3)/ln(10)

[mm] 3^x=10^{x ln(3)/ln(10)} [/mm]



Zusatz: Wir haben früher in der Handelsschule beim kaufmännischen Rechnen immer den Logarithmus zur Basis 10 benutzt, weil das mit Tabellen einfacher war. Dieser heißt lg und ist auf manchen Taschenrechnern noch vorhanden als log. Damit erhältst du:

[mm] lg(3^x)=x*lg(3) [/mm] und damit schon [mm] 3^x=10^{x*lg(3)} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de