www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Basketball-Freiwurf
Basketball-Freiwurf < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basketball-Freiwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 So 28.05.2006
Autor: ProBus

Aufgabe
Armin und Beat versuchen sich im Basketball-Freiwurf. Armin trifft jeweils mit der Wahrscheinlichkeit pA = 1/5 und Beat mit pB = 2/7 in den Korb. Die Zwei werfen abwechselnd, Armin beginnt.

a) Wie gross ist die Wahrscheinlichkeit, dass bei den ersten vier Würfen (also jeder zwei Mal) der Korb genau ein Mal getroffen wird?

b) Bei den ersten vier Würfen ist der Korb genau ein Mal getroffen worden. Mit welcher Wahrscheinlichkeit kam der Treffer von Beat?

c) Die beiden werfen abwechselnd so lange, bis der erste in den Korb trifft. Der Werfer dieses Treffers wird zum Sieger erklärt. Wie gross ist die Wahrscheinlichkeit, dass Armin zum Sieger erklärt wird?

Puh, leider habe ich keine Ahnung mehr, wie ich diese Aufgaben lösen soll. Könnte mir jemand einen Link geben oder vielleicht gerade vorlösen?

Wäre echt lieb
Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Basketball-Freiwurf: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 22:22 So 28.05.2006
Autor: hase-hh

moin fabio,

ich würde mir zunächst einen entscheidungsbaum aufzeichnen:


1. Stufe
(Armin wirft)
                                                 ^

                      Treffer                                Fehlwurf          
                       (1/5)                                   (4/5)
2. Stufe
(Beat wirft)
                          ^                                        ^
                   T            F                           T             F  
                (2/7)      (5/7)                    (2/7)        (5/7)

3. Stufe
(Armin wirft)

                  ^              ^                        ^            ^
              T       F     T         F                T      F     T      F    
           (1/5) (4/5) ...

4. Stufe
(Beat wirft)
             ^        ^          ^        ^       ^        ^           ^          ^
          T    F     T F        T F      T  F    T  F     T  F        T  F       T  F
     (2/7) (5/7) ...

Ich erhalte folgende n-Tupel (mit den zugehörigen Wahrscheinlichkeiten)

TTTT   [mm] \bruch{1}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{2}{7} [/mm]

TTTF   [mm] \bruch{1}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{5}{7} [/mm]

TTFT   [mm] \bruch{1}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{2}{7} [/mm]

TTFF   [mm] \bruch{1}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{5}{7} [/mm]

TFTT   [mm] \bruch{1}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{2}{7} [/mm]

TFTF   [mm] \bruch{1}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{5}{7} [/mm]

TFFT   [mm] \bruch{1}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{2}{7} [/mm]

TFFF   [mm] \bruch{1}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{5}{7} [/mm]

FTTT   [mm] \bruch{4}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{2}{7} [/mm]

FTTF   [mm] \bruch{4}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{5}{7} [/mm]

FTFT   [mm] \bruch{4}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{2}{7} [/mm]

FTFF   [mm] \bruch{4}{5}* \bruch{2}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{5}{7} [/mm]

FFTT   [mm] \bruch{4}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{2}{7} [/mm]

FFTF   [mm] \bruch{4}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{1}{5}* \bruch{5}{7} [/mm]

FFFT   [mm] \bruch{4}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{2}{7} [/mm]

FFFF   [mm] \bruch{4}{5}* \bruch{5}{7} [/mm] * [mm] \bruch{4}{5}* \bruch{5}{7} [/mm]


jetzt muss ich für a) nur noch die Wahrscheinlichkeiten derjenigen Tupelk zusammenzählen, die genau einmal "T" [und logischerweise 3*"F"] enthalten.

TFFF
FTFF
FFTF
FFFT

soweit...










                            

                            









Bezug
                
Bezug
Basketball-Freiwurf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 So 28.05.2006
Autor: ProBus

vielen Dank für deine Mühe.

Bezug
        
Bezug
Basketball-Freiwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Mo 29.05.2006
Autor: Zwerglein

Hi, ProBus,

nicht leicht die Aufgabe!

a) Dafür, dass Armin einmal trifft, einmal nicht und Beat beide Male daneben haut, gibt's 2 Möglichkeiten; jede davon hat die Wahrscheinlichkeit [mm] \bruch{1}{5}*\bruch{4}{5}*(\bruch{5}{7})^{2}. [/mm]
Für Beat gilt das Analoge mit der jeweiligen Wahrscheinlichkeit von  [mm] \bruch{2}{7}*\bruch{5}{7}*(\bruch{4}{5})^{2}. [/mm]

Gesamtwahrscheinlichkeit daher:
P("genau 1 Treffer bei 4 Würfen") = [mm] 2*\bruch{1}{5}*\bruch{4}{5}*(\bruch{5}{7})^{2} [/mm] + [mm] 2*\bruch{2}{7}*\bruch{5}{7}*(\bruch{4}{5})^{2} [/mm] = ... (Ausrechnen kannst Du's selbst!)


b) bedingte Wahrscheinlichkeit!
... = [mm] \bruch{2*\bruch{2}{7}*\bruch{5}{7}*(\bruch{4}{5})^{2}}{2*\bruch{1}{5}*\bruch{4}{5}*(\bruch{5}{7})^{2} + 2*\bruch{2}{7}*\bruch{5}{7}*(\bruch{4}{5})^{2}} [/mm] = ...

c) Geht wohl nur mit geometrischer Reihe, denn:
A wirft und trifft:  Wahrsch. [mm] \bruch{1}{5} [/mm]
A trifft erst bei SEINEM 2. Wurf: [mm] (\bruch{4}{5}*\bruch{5}{7})*\bruch{1}{5} [/mm] = [mm] \bruch{4}{7}*\bruch{1}{5} [/mm]
A trifft erst bei seinem 3. Wurf: [mm] (\bruch{4}{7})^{2}*\bruch{1}{5} [/mm]
usw.

Und die Wahrscheinlichkeiten musst Du nun alle addieren, wobei es ja nicht auszuschließen ist, dass A und B "bis zum St.Nimmerleins-Tag" werfen, also: unendlich oft.

P("A trifft als erster") = [mm] \summe_{i=0}^{\infty}(\bruch{4}{7})^{i}*\bruch{1}{5} [/mm] = ...

(Denk-, Rechen- und Tippfehler NICHT AUSGESCHLOSSEN!!!)

mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de