www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bed. bel. aber fest gewählt
Bed. bel. aber fest gewählt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bed. bel. aber fest gewählt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 So 07.11.2010
Autor: Binary

Hallo zusammen,

ich sitze gerade an Stochastik und bearbeite eine Aufgabe bezüglich des Urbildes.
Nun wollte ich schreiben "Das Urbild einer beliebigen Menge M...".

Da fiel mir wieder der häufig gelesene Satz "Beliebig aber fest gewählt" ein.
Was bedeutet er genau?
Wann verwende ich diesen?
Wäre dies hier angebracht?

Vielen Dank und viele Grüße

        
Bezug
Bed. bel. aber fest gewählt: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 16:00 Mo 08.11.2010
Autor: moudi

Sei c beiliebig aber fest gewaehlt heisst, dass es auf den Wert von c nicht ankommt, dass aber der Wert von c nicht variiert wird.

Am haeufigsten wird diese Begriff in der "Espilontik" gebraucht, d.h. in den [mm] $\delta$-$\epsilon$ [/mm] Definitionen.
Die Aussagen haben oft die Form: [mm] $\forall \epsilon>0\ \exists \delta>0 (\ldots)$. [/mm]

Um die Aussage nachzuweisen muss man sich ein Zweipersonenspiel vorstellen: A sagt ein positive Zahl [mm] $\epsilon$ [/mm] und Spieler B muss eine positive Zahl [mm] $\delta$ [/mm] so finden, dass die Aussage [mm] $(\ldots)$ [/mm] zutrifft.
B hat eine Gewinnstrategie, wenn er für jede Wahl [mm] $\epsilon$ [/mm] von A eine Zahl [mm] $\delta$ [/mm] liefern kann so, dass die Aussage [mm] $(\ldots)$ [/mm] richtig ist. In diesem Fall ist die Aussage [mm] $\forall \epsilon\ \exists \delta (\ldots)$ [/mm] bewiesen.
A hat eine Gewinnstrategie, wenn er eine Zahl [mm] $\epsilon$ [/mm] liefern kann, fuer die Spieler B kein [mm] $\delta$ [/mm] finden kann. In diesem Fall ist die Negation der Aussage [mm] $\neg\forall \epsilon\ \exists \delta (\ldots)$. [/mm]

Man beginnt dann oft mit: Sei [mm] $\epsilon$ [/mm] eine beliebige aber fest gewaehlte positive Zahl.

Damit will man ausdruecken, dass es auf den Wert von [mm] $\epsilon$ [/mm] nicht ankommt (das ist der Allquantor [mm] $\forall$ [/mm] der Aussage), dass nach einer Wahl von [mm] $\epsilon$ [/mm] jetzt das [mm] $\delta$ [/mm] gefunden werden muss. Wenn A seine Wahl gemacht hat, dann kommt B an den Zug und A darf seine Zahl [mm] $\epsilon$ [/mm] nicht mehr aendern.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de