www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Bedeutung des Null setzen's
Bedeutung des Null setzen's < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedeutung des Null setzen's: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Do 14.01.2016
Autor: Tabeah

Aufgabe
[mm] cos(x)e^{x}=sin(x) [/mm]

Hallo,

ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe ist ein Teil einer größeren Aufgabe und dient nur als Anschauungsobjekt.

Am Anfang muss ich den Term oben gleich Null setzen.

[mm] cos(x)e^{x}-sin(x)=0 [/mm]

So und genau hier ist mir die Frage aufgekommen was dass soll.

Die Aussage [mm] cos(x)e^{x}-sin(x)=0 [/mm] ist Falsch denn so wie es da steht gilt es ja für alle x. Stimmt aber nicht. Das ist doch mehr eine Frage als eine Aussage, nämlich die Frage wann [mm] cos(x)e^{x}-sin(x)=0 [/mm] wird.

Das kann man jetzt auf jede Formel mit Variablen drinnen übertragen.

Meine Frage also ist was die Aussage des Null setzen's denn genau ist.
In der Lösung wird einfach total dreisst gesagt [mm] f(x)=cos(x)e^{x}-sin(x) [/mm] und damit wird dann weiter gerechnet.

Das muss doch einen Grund haben.

        
Bezug
Bedeutung des Null setzen's: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 14.01.2016
Autor: abakus


> [mm]cos(x)e^{x}=sin(x)[/mm]
>  Hallo,
>
> ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe
> ist ein Teil einer größeren Aufgabe und dient nur als
> Anschauungsobjekt.
>  
> Am Anfang muss ich den Term oben gleich Null setzen.
>  
> [mm]cos(x)e^{x}-sin(x)=0[/mm]
>  
> So und genau hier ist mir die Frage aufgekommen was dass
> soll.
>  
> Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm] ist Falsch denn so wie es
> da steht gilt es ja für alle x.

Schon deine Aussage "Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm]... " ist falsch, denn [mm]cos(x)e^{x}-sin(x)=0[/mm] IST KEINE AUSSAGE, sondern nur eine Aussageform.
Daraus kann man auf folgende drei Arten eine Aussage machen:
a) Man ersetzt die freie Variable x durch einen konkreten Zahlenwert.
b) Man schreibt "Es gibt eine Zahl x mit  " davor.
c) Man schreibt "Für alle x gilt: " davor (und das steht da entgegen deiner Behauptung noch nicht).


Bezug
        
Bezug
Bedeutung des Null setzen's: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Do 14.01.2016
Autor: abakus


> In der Lösung wird einfach total dreisst gesagt
> [mm]f(x)=cos(x)e^{x}-sin(x)[/mm]

Mit so einer Gleichung definiert man einfach die Vorschrift, die in der Funktion f einem Argument x seinen Funktionswert f(x) zuordnet.

Bezug
        
Bezug
Bedeutung des Null setzen's: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Do 14.01.2016
Autor: chrisno


> [mm]cos(x)e^{x}=sin(x)[/mm]
>  Hallo,
>
> ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe
> ist ein Teil einer größeren Aufgabe und dient nur als
> Anschauungsobjekt.

Hier hake ich direkt ein. Ich muss nämlich raten, worum es eigentlich geht.
Du schreibst einfach [mm]cos(x)e^{x}=sin(x)[/mm].
Vermutlich gab es eine Fragestellung, die zu der Gleichung führte. Gesucht sind alle die x, für die die Gleichung richtig ist.

Das musst Du bestätigen, dass dies die Fragestellung ist.


>  
> Am Anfang muss ich den Term oben gleich Null setzen.

Du musst nicht, aber es ist eine Strategie.

>  
> [mm]cos(x)e^{x}-sin(x)=0[/mm]
>  
> So und genau hier ist mir die Frage aufgekommen was dass
> soll.
>  
> Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm] ist Falsch denn so wie es
> da steht gilt es ja für alle x. Stimmt aber nicht. Das ist
> doch mehr eine Frage als eine Aussage, nämlich die Frage
> wann [mm]cos(x)e^{x}-sin(x)=0[/mm] wird.

Wenn die von mir formulierte Fragestellung stimmt, dann haben die Gleichungen
[mm]cos(x)e^{x}-sin(x)=0[/mm] und [mm]cos(x)e^{x}=sin(x)[/mm] die gleichen Lösungsmengen.
Das heißt wenn ein x die eine Gleichung löst, löst es auch die andere.


>  
> Das kann man jetzt auf jede Formel mit Variablen drinnen
> übertragen.

Klar, bei Äquivalenzumformungen von Gleichungen bleibt die Lösungsmenge erhalten.

>
> Meine Frage also ist was die Aussage des Null setzen's denn
> genau ist.

Es ist keine Aussage, sondern eine Methode, die eventuell die Betrachtung vereinfacht. In diesem Fall sehe ich das nicht sofort. Allerdings vermute ich (Deine Informationen haben Lücken), dass es um eine numerische Bestimmung der Lösung handelt. Die Verfahren werden für die Bestimmung von Nullstellen formuliert.

> In der Lösung wird einfach total dreisst gesagt

Gar nicht dreist, sondern garantiert mit Bezug auf etwas, das vorausgesetzt wird.

> [mm]f(x)=cos(x)e^{x}-sin(x)[/mm] und damit wird dann weiter
> gerechnet.

Gerechnet? Erkläre

>
> Das muss doch einen Grund haben.


Bezug
        
Bezug
Bedeutung des Null setzen's: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Mo 18.01.2016
Autor: Tabeah

Ah, danke euch beiden. Ich habe einfach ein paar Begrifflichkeiten der Mathematik durcheinander gebracht. Wenn das keine Aussage ist dann ist in meinem Kopf auch wieder alles klar. Im Grunde sucht man mit dem Null setzen ja alle x für die das gilt.

Dankeschön =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de