Bedingte Verteilungen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei [mm] t [/mm] eine reelle Zahl mit [mm]0 < t < 1[/mm]. Weiter seien X und Y zwei unabhaengige Zufallsvariable auf einem Wahrscheinlichkeitsraum [mm](\Omega,\mathcal{A}, P)[/mm] mit den Verteilungen [mm]L_{P}(X) =
N(0, t)[/mm] und [mm]L_{P}(Y ) = N(0, 1-t)[/mm], wobei [mm]N(\mu,\sigma ^2)[/mm] die Normalverteilung mit Erwartungswert [mm]\mu[/mm] und Varianz [mm]\sigma ^2[/mm] bezeichnet. Zeigen Sie, dass eine bedingte Verteilung von X gegeben X+Y P-fast sicher durch [mm]P[X \in A / X + Y ] = N(tX + tY, t-t^2)(A), A \in \mathbb{B}(R)[/mm] gegeben wird. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Auch hier bitte ich freundlichst um Hinweise!!
Ich weiss nicht recht, wie ich da ran gehen soll. Koennte es ueber Fouriertransformierte gehen oder ueber eine Transformation des Koordinatensystems bzgl der X+Y Achsen durch Null...?
Danke und liebe Gruesse!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:54 Mi 18.10.2006 | Autor: | DirkG |
Wegen der Unabhängigkeit sind
$$U := X+Y [mm] \sim \mathcal{N}(0,1)$$
[/mm]
sowie
$$V := (1-t)X-tY [mm] \sim \mathcal{N}(0,t(1-t))$$
[/mm]
und beide sind unkorreliert und wegen ihrer Normalverteilung damit auch unabhängig (!). Umgeschrieben erhält man
$$X = tU+V, Y = (1-t)U-V$$
Du suchst nun die bedingte Verteilung von $X=tU+V$ unter der Bedingung $X+Y=U$, d.h.
$P( tU+V [mm] \in [/mm] A [mm] \bigm| [/mm] U=u) = P( tu+V [mm] \in [/mm] A [mm] \bigm| [/mm] U=u) = P( tu+V [mm] \in [/mm] A) ,$
letztere Gleichheit folgt aus der Unabhängigkeit von $U$ und $V$.
Alles klar bis hierher? Den Rest kriegst du hin.
Gruß,
Dirk
|
|
|
|
|
Hi Dirk!
Herzlichen Dank für den Hinweis! Das hilft sehr. Das Problem bei solchen Aufgaben ist das Erkennen der Lösungsstrategie. Ich wäre Dir sehr dankbar, wenn Du mal Deine Gedankengänge kurz zusammenfassen könntest wie Du darauf gekommen bist die Transformationen [mm] U [/mm] und [mm] V [/mm] eizuführen und warum sie diese Gestalt haben...
Nochmals vielen Dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:31 Fr 20.10.2006 | Autor: | DirkG |
Der Gedankengang in aller Ausführlichkeit war folgender:
Als Vektor betrachtet, ist [mm] $\begin{pmatrix} X\\ Y \end{pmatrix}$ [/mm] normalverteilt, also [mm] $\begin{pmatrix} X\\ Y \end{pmatrix}\sim \mathcal{N}(\underline{0},\Sigma)$ [/mm] mit dem zweidimensionalen Nullvektor [mm] $\underline{0}$ [/mm] und der Kovarianzmatrix [mm] $\Sigma [/mm] = [mm] \begin{pmatrix} t & 0 \\ 0 & 1-t \end{pmatrix}$.
[/mm]
Jetzt unterziehen wir diesen Vektor der linearen Transformation
[mm] $$\begin{pmatrix} U\\ V \end{pmatrix} [/mm] = A [mm] \cdot \begin{pmatrix} X\\ Y \end{pmatrix}$$
[/mm]
mit einer 2x2-Matrix $A$, dann ist auch [mm] $\begin{pmatrix} U\\ V \end{pmatrix}\sim \mathcal{N}(\underline{0},\Sigma')$ [/mm] mit nunmehr der Kovarianzmatrix [mm] $\Sigma' [/mm] = [mm] A\Sigma A^T$.
[/mm]
Warum das ganze? Nun, wir wollen erreichen, dass
(1) die Zufallsgröße der Bedingung, hier also $X+Y$, nur noch aus einer Komponente des transformierten Vektors besteht, konkret $U$.
(2) die beiden Komponenten $U,V$ unabhängig sind, denn dann kann man abschließend so rechnen, wie ich es oben getan habe.
Gut, nun zur Realisierung:
(1) ist einfach: $U=X+Y$, damit haben wir schon die erste Zeile der Matrix $A$, wir setzen an
$$A = [mm] \begin{pmatrix} 1 & 1 \\ r & s \end{pmatrix} [/mm] ,$$
also $V=rX+sY$ mit noch zu bestimmenden reellen Parametern $r,s$.
(2) Diese Forderung ist äquivalent zu [mm] $\operatorname{cov}(U,V)=0$. [/mm] Jetzt einsetzen:
$$0 = [mm] \operatorname{cov}(X+Y,rX+sY) [/mm] = [mm] r\cdot\operatorname{cov}(X,X) [/mm] + [mm] (r+s)\cdot\operatorname{cov}(X,Y) [/mm] + [mm] s\cdot\operatorname{cov}(Y,Y) [/mm] = rt+s(1-t)$$
Jede Lösung $(r,s)$ dieser Gleichung tut es, z.B. eben $r=1-t,s=-t$. Jetzt sind wir also bei
$$A = [mm] \begin{pmatrix} 1 & 1 \\ 1-t & -t \end{pmatrix}, \quad \begin{pmatrix} U\\ V \end{pmatrix} [/mm] = A [mm] \cdot \begin{pmatrix} X\\ Y \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 1 \\ 1-t & -t \end{pmatrix} \cdot \begin{pmatrix} X\\ Y \end{pmatrix},$$
[/mm]
das kann man natürlich umkehren
[mm] $$\begin{pmatrix} X\\ Y \end{pmatrix} [/mm] = [mm] A^{-1} \cdot \begin{pmatrix} U\\ V \end{pmatrix} [/mm] = [mm] \begin{pmatrix} t & 1 \\ 1-t & -1 \end{pmatrix} \cdot \begin{pmatrix} U\\ V \end{pmatrix} [/mm] $$
und erhält so obige Transformation und die Rechnung
[mm] $$P(X\in [/mm] A [mm] \bigm| [/mm] X+Y=u) = [mm] P(tU+V\in [/mm] A [mm] \bigm| [/mm] U=u) = P( tu+V [mm] \in [/mm] A [mm] \bigm| [/mm] U=u) = P( tu+V [mm] \in [/mm] A)$$
Dann brauchen wir lediglich noch den Varianzparameter der Normalverteilung von $V$
[mm] $$\operatorname{var}(V) [/mm] = [mm] \operatorname{var}((1-t)X-tY) [/mm] = [mm] (1-t)^2\operatorname{var}(X)+t^2\operatorname{var}(Y) [/mm] = [mm] (1-t)^2t+t^2(1-t)=t(1-t)$$
[/mm]
und erhaltem [mm] $V\sim\mathcal{N}(0,t(1-t))$, [/mm] und mit der konstanten Verschiebung schließlich
$$tu+V [mm] \sim\mathcal{N}(tu,t(1-t)) [/mm] ,$$
und dann noch dran denken, dass $u$ die in der Bedingung erwähnte Realisierung der Zufallsgröße $X+Y$ war. Ich belasse es dabei, denn eine Formulierung wie [mm] $P(X+Y\in [/mm] A [mm] \bigm| X+Y)=\mathcal{N}(t(X+Y),t(1-t))(A)$ [/mm] halte ich für mathematisch ziemlich unsauber und missverständlich.
|
|
|
|
|
TOLL!!!!
Herzlichen Dank! Diese Vorgehensweise habe ich dann nun endlich auchverstanden und kann sie so in der Klausur anwenden. Du glaubst gar nicht, wie sehr Du mir geholfen hast!!!
Vielen Dank!
|
|
|
|