www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bedingte Verteilungen II
Bedingte Verteilungen II < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Verteilungen II: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:17 Mi 21.11.2007
Autor: Ramanujan

Aufgabe
Für die unabhängigen ZV [mm] X_{1},X_{2} [/mm] gelte: [mm] X_{1}\sim [/mm] Exp(0,01) und [mm] X_{2} [/mm] Exp(0,02). Bestimmen Sie [mm] P(Y\le [/mm] 200) für die ZV [mm] Y=max(X_{1},X_{2}). [/mm]

Hinweis: [mm] P(Y\le x)=P(X_{1}\le [/mm] x, [mm] X_{2}\le [/mm] x)

Guten Abend!!!

Es tut mir leid, wenn ich gar keine eigenen Ansätze bringen kann, aber mir  fehlt wirklich der Ansatzgedanke...

Ich danke Euch für kleinste Tipps...

Viele Grüße
Ramanujan

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Bedingte Verteilungen II: Vorschlag (?)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 21.11.2007
Autor: Riley


Hallo Ramanujan,

ich schreib das hier nur mal als Mitteilung, weil mich dein Betreff "bedingte Verteilungen" etwas verwirrt...

Ich würde so ansetzen (erste Schritt ist ja schon gegeben):
P(Y [mm] \leq [/mm] 200) = [mm] P(X_1 \leq [/mm] 200) [mm] \cdot P(X_2 \leq [/mm] 200)  (Unabhängigkeit)

... und dann müsste doch gelten (wenn ich mich Recht erinnere...):

[mm] P(X_1 \leq [/mm] 200) = [mm] \int_0^{200} (1-e^{-\lambda t}) [/mm] dt

Vielleicht kann das ja noch jemand bestätigen oder widerlegen?

Viele Grüße,
Riley :)




Bezug
                
Bezug
Bedingte Verteilungen II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mi 21.11.2007
Autor: luis52


>
> Hallo Ramanujan,
>  
> ich schreib das hier nur mal als Mitteilung, weil mich dein
> Betreff "bedingte Verteilungen" etwas verwirrt...
>  
> Ich würde so ansetzen (erste Schritt ist ja schon
> gegeben):
>  P(Y [mm]\leq[/mm] 200) = [mm]P(X_1 \leq[/mm] 200) [mm]\cdot P(X_2 \leq[/mm] 200)  
> (Unabhängigkeit)
>  
> ... und dann müsste doch gelten (wenn ich mich Recht
> erinnere...):
>  
> [mm]P(X_1 \leq[/mm] 200) = [mm]\int_0^{200} (1-e^{-\lambda t})[/mm] dt
>  
> Vielleicht kann das ja noch jemand bestätigen oder
> widerlegen?
>  


Das ist leider nicht korrekt. Vielmehr ist

[mm] $P(X_1\le 200)=\int_0^{200} \lambda_1\exp[-\lambda_1 t]\, dt=1-\exp[-\lambda_1\times200]$. [/mm]


lg Luis

Bezug
                        
Bezug
Bedingte Verteilungen II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mi 21.11.2007
Autor: Riley

Hi Luis,
danke für deine Korrektur! ... da hab ich wohl Dichte und Verteilungsfunktion etwas vermischt - ops...

Aber hat die Aufgabe etwas mit der bedingten Verteilung zu tun?

Viele Grüße,
Riley

Bezug
                                
Bezug
Bedingte Verteilungen II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mi 21.11.2007
Autor: luis52


> Aber hat die Aufgabe etwas mit der bedingten Verteilung zu
> tun?
>  

Hi Riley,

da teile ich deine Zweifel.

lg Luis

Bezug
        
Bezug
Bedingte Verteilungen II: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 24.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de