www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 04.09.2014
Autor: hase-hh

Aufgabe
Gegeben ist  P(A [mm] \cap [/mm] B) = 0,6

P(A) = 0,75

Wie groß ist die Wahrscheinlichkeit von  [mm] P_A [/mm] (A [mm] \cap [/mm] B)   ?

Moin Moin,

ist es nicht einfach so, dass für A [mm] \cap [/mm] B  sowohl A als auch B vorliegen muss, d.h.

wenn zunächst A eingetreten ist dann ist  [mm] P_A [/mm] (A [mm] \cap [/mm] B) = P(A [mm] \cap [/mm] B)

oder nicht?


Hier also  0,6.  


Danke & Gruß

        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Do 04.09.2014
Autor: Diophant

Hallo,

> Gegeben ist P(A [mm]\cap[/mm] B) = 0,6

>

> P(A) = 0,75

>

> Wie groß ist die Wahrscheinlichkeit von [mm]P_A[/mm] (A [mm]\cap[/mm] B)
> ?
> Moin Moin,

>

> ist es nicht einfach so, dass für A [mm]\cap[/mm] B sowohl A als
> auch B vorliegen muss, d.h.

>

> wenn zunächst A eingetreten ist dann ist [mm]P_A[/mm] (A [mm]\cap[/mm] B) =
> P(A [mm]\cap[/mm] B)

>

> oder nicht?

>

Nein, eben nicht. Du suchst die Wahrscheinlichkeit dafür, dass A und B eintreten, unter der Bedingung, dass bereits das Eintreten von A bekannt ist.

Also

[mm] P_A({A}\cap{B})=\bruch{P({A}\cap{B})}{P(A)} [/mm]


Gruß, Diophant

PS: wie kommst du hier auf die Einorndung unter 'Kombinatorik'?

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Do 04.09.2014
Autor: hase-hh

Moin,

> Nein, eben nicht. Du suchst die Wahrscheinlichkeit dafür,
> dass A und B eintreten, unter der Bedingung, dass bereits
> das Eintreten von A bekannt ist.
>  
> Also
>  
> [mm]P_A({A}\cap{B})=\bruch{P({A}\cap{B})}{P(A)}[/mm]

Also einfach   [mm] \bruch{0,6}{0,75} [/mm] = 0,8 .


Warum komme ich auf meine Idee:
Ich suche die Wahrscheinlichkeit dafür, dass wenn A bereits eingetreten ist: dass dann auch noch B eintritt. Dann hätte ich aber doch sowohl A als auch B ?!?

Ah, da könnte der Denkfehler sein. Ich suche die Wahrscheinlichkeit dafür, dass wenn A bereits eingetreten ist: dass dann auch A [mm] \cap [/mm] B eintritt (also ein Element das sowohl zu A als auch zu B gehört).


  

> Gruß, Diophant
>  
> PS: wie kommst du hier auf die Einorndung unter
> 'Kombinatorik'?

gute Frage! Wahrscheinlich passt es besser unter "Sonstiges" ... ^^

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Do 04.09.2014
Autor: Diophant

Hallo,

> Moin,

>

> > Nein, eben nicht. Du suchst die Wahrscheinlichkeit dafür,
> > dass A und B eintreten, unter der Bedingung, dass bereits
> > das Eintreten von A bekannt ist.
> >
> > Also
> >
> > [mm]P_A({A}\cap{B})=\bruch{P({A}\cap{B})}{P(A)}[/mm]

>

> Also einfach [mm]\bruch{0,6}{0,75}[/mm] = 0,8 .

Ja, genau. [ok]

>

> Warum komme ich auf meine Idee:
> Ich suche die Wahrscheinlichkeit dafür, dass wenn A
> bereits eingetreten ist: dass dann auch noch B eintritt.
> Dann hätte ich aber doch sowohl A als auch B ?!?

Ja: auf der sprachlichen Ebene stimmt das. Nur berücksichtigt dein mathematisches Vorgehen nicht die Tatsache, dass du um das Eintreten von A bereits weißt. Die 0.6 sind ja die Wahrscheinlichkeit dafür, dass sowohl A als auch B eintreten, ohne dass man irgeneine Vorbedingung bzw. ein Vorwissen über den Ausgang des Experiments hat.

>

> Ah, da könnte der Denkfehler sein. Ich suche die
> Wahrscheinlichkeit dafür, dass wenn A bereits eingetreten
> ist: dass dann auch A [mm]\cap[/mm] B eintritt (also ein Element das
> sowohl zu A als auch zu B gehört).

>

Ja nun, die bedingte Wahrscheinlichkeit ist schwieriger zu fassen, als es auf den ersten Blick ausschaut. Wenn ich erhlich bin: da habe ich mich auch früher eine ganze Zeit lang schwer getan damit.



Gruß, Diophant

Bezug
                                
Bezug
Bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Fr 05.09.2014
Autor: DieAcht

Hallo,


> Ja nun, die bedingte Wahrscheinlichkeit ist schwieriger zu
> fassen, als es auf den ersten Blick ausschaut. Wenn ich
> erhlich bin: da habe ich mich auch früher eine ganze Zeit
> lang schwer getan damit.

Ich habe es am Anfang auch nicht verstanden. Dann habe ich mir ein
Baumdiagramm aufgezeichnet und die "Pfadregel" benutzt. Dann um-
gestellt und voilà. :-)


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de