www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 18.08.2011
Autor: folken

Aufgabe
P(X=k) = [mm] p*(1-p)^{k-1} [/mm]
n,k [mm] \in [/mm] IN
Zeige:
P(X=n+k|X>n)=P(X=k)

Hallo,

ich habe bereits die Lösung dieser Aufgabe:

P(x=n+k|X>n) = [mm] \bruch{P(X=n+k)}{P(X>n)}=\bruch{p*(1-p)^{n+k-1}}{1-(1-(1-p)^{n})} [/mm] = [mm] p*(1-p)^{k-1}=P(X=k) [/mm]

Ich verstehe nur nicht, wie man nach dem zweiten Gleichheitszeichen auf den Nenner kommt bzw. wie man das aus dem vorhergehenden Nenner schlussfolgert.


        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Do 18.08.2011
Autor: Diophant

Hallo,

der Nenner ist eine Wahrscheinlichkeit der Form P(X>k), also genau die Wahrscheinlichkeit des Komplementärereignisses zu [mm] P(X\le [/mm] k), was wiederum genau deine Verteilung (hier: die geometrische Verteilung) ist.

Hilft dir das schon weiter?

Gruß, Diophant

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Do 18.08.2011
Autor: folken

Danke dir erstmal.

Das mit dem Gegenereignis ist nachvollziehbar, aber müsste es dann nicht
[mm] 1-(p*(1-p)^{k-1}) [/mm] sein, weil Gegenwahrscheinlichkeit = 1- Wahrscheinlichkeit, oder wie kommt man genau auf den obigen Term.

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Do 18.08.2011
Autor: schachuzipus

Hallo folken,


> Danke dir erstmal.
>  
> Das mit dem Gegenereignis ist nachvollziehbar, aber müsste
> es dann nicht
>  [mm]1-(p*(1-p)^{k-1})[/mm] sein, weil Gegenwahrscheinlichkeit = 1-
> Wahrscheinlichkeit, oder wie kommt man genau auf den obigen
> Term.

Es ist [mm]P(X>n)=1-P(X\le n)=1-\left[ \ P(X=1)+P(X=2)+P(X=3)+\ldots+P(X=n) \ \right][/mm]

[mm]=1-\left[p(1-p)^0+p(1-p)^1+p(1-p)^2+\ldots+p(1-p)^{n-1}\right]=1-\left[p\cdot{}\sum\limits_{k=1}^n(1-p)^{k-1} \ \right][/mm]

Nun mache eine kleine Indexverschiebung zu [mm]k=0[/mm] und bemühe die Formel für die endliche geometr. Reihe.

Gruß

schachuzipus


Bezug
                                
Bezug
Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 18.08.2011
Autor: folken

Danke dir, eine letzte Frage noch dazu:

bei mir bekomme ich folgendes raus für den Nenner: [mm] 1-P*(\bruch{1-(1-p)^{n+1}}{1-(1-p)}) [/mm] = [mm] 1-(1-(1-p)^{n+1}) [/mm]  Wo ist mein Fehler?

Bezug
                                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Do 18.08.2011
Autor: schachuzipus

Hoppa!

> Danke dir, eine letzte Frage noch dazu:
>  
> bei mir bekomme ich folgendes raus für den Nenner:
> [mm]1-P*(\bruch{1-(1-p)^{n+1}}{1-(1-p)})[/mm] = [mm]1-(1-(1-p)^{n+1})[/mm]  
> Wo ist mein Fehler?

Die Potenz [mm]n+1[/mm] stimmt nicht.

Wenn du an der Summe die Indexverschiebung machst, so ändert sich auch der obere Index:

Nur die Summe:

[mm]\sum\limits_{k=1}^{n}(1-p)^{k-1}=\sum\limits_{k=0}^{n-1}(1-p)^k[/mm]

Denn die Anzahl der Summanden muss ja gleich bleiben (n Summanden sind es)

Und wenn du an der Summe den Index [mm]k[/mm] um (direkt allgemein) [mm]m[/mm] erniedrigst, musst du das ausgleichen, indem du jedes k in der Summe um [mm]m[/mm] erhöhst.

Nun ergibt sich für die Summe: [mm]=\frac{1-(1-p)^n}{1-(1-p)}=\frac{1-(1-p)^n}{p}[/mm]

Jetzt noch zusammenmodeln und du hast es ...


Gruß

schachuzipus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de