www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Bedingte Wahrscheinlichkeiten
Bedingte Wahrscheinlichkeiten < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Sa 01.12.2007
Autor: Englein89

Guten Tag,

wir nehmen gerade den Stoff zu bedingten Wahrscheinlichkeiten durch, ich habe da aber leider nicht wirklich den Durchblick.

Meine erste große Frage, durch die sich der Rest evtl erklärt:

Wenn ich P(A [mm] \cap [/mm] B) errechnen soll, mach ich das durch Logik im Kopf, oder gibt es da eine Rechenweise?

Ich hab dazu nur die Formel hier gefunden:

P(A)* PA(B)= P(A [mm] \cap [/mm] B) [mm] \gdw [/mm] PA(B)= P(A [mm] \cap [/mm] B) / P(A)

Kann mir da jemand weiterhelfen?

Ansonsten gibt es ja nur noch die Berechnung der Unabhängigkeit, die ist danach ja wieder einfach. Ansonsten gibt es doch kaum anderen Schritte der Berechnung bei diesem Thema, oder?

Vielen, vielen Dank! Ich finde es übrigens super, dass manche hier so hilfreich mit Rat und Tat zur Seite stehen!

        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Sa 01.12.2007
Autor: luis52

Moin Englein89

>  
> Wenn ich P(A [mm]\cap[/mm] B) errechnen soll, mach ich das durch
> Logik im Kopf, oder gibt es da eine Rechenweise?

Logik im Kopf kann nie schaden... ;-)

Es gibt aber Situationen, wo die Berechnung erleichtert wird:

1) $P(B) >0$ bzw. $P(A)>0$: Dann ist [mm] $P(A\cap B)=P(A\mid [/mm] B)P(B)$ bzw.
[mm] $P(A\cap B)=P(B\mid [/mm] A)P(A)$. Das ist dann guenstig, wenn [mm] $P(A\cap [/mm] B)$
vergleichsweise schwer direkt zu berechnen ist, aber beispielsweise
[mm] $P(A\mid [/mm] B)$ und $P(B)$ leicht.

2) A und B sind unabhaengig. Dann brauchst du nur $P(A)$ und $P(B)$
zu kennen.

lg Luis


Bezug
                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 01.12.2007
Autor: Englein89

Hallo,

danke für die Antwort. Leider verstehe ich die Schreibweise mit | nicht. Was wird da berechnet?

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 01.12.2007
Autor: koepper

Hallo Englein,

das Zeichen "|" bedeutet "unter der Bedingung", also $P(A | B) = [mm] P_B(A)$ [/mm] in deiner Schreibweise.

LG
Will

Bezug
                                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 02.12.2007
Autor: Englein89

Hallo,

demnach entspricht das ja genau der Formel, die ich schon zu Beginn angesprochen hatte. Aber um [mm] P_B(A) [/mm] zu berechnen, rechne ich doch auch wieder mit dem Bruch, der dann im Zähler wieder P(A [mm] \cap [/mm] B) lautet.

Bezug
                                        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 So 02.12.2007
Autor: koepper

Hallo,
>  
> demnach entspricht das ja genau der Formel, die ich schon
> zu Beginn angesprochen hatte. Aber um [mm]P_B(A)[/mm] zu berechnen,
> rechne ich doch auch wieder mit dem Bruch, der dann im
> Zähler wieder P(A [mm]\cap[/mm] B) lautet.

da hast du Recht.

Um $P(A [mm] \cap [/mm] B)$ tatsächlich in einer Situation auszurechnen, gibt es verschiedene Möglichkeiten. Das hängt aber eben sehr von dem zugrundeliegenden Zufallsexperiment ab. Eine allgemeine Antwort kann man darauf kaum geben.

Beispiel: Ein Würfel wird geworfen. Die Ergebnismenge enthält die Elementarereignisse {1,2,3,4,5,6}.
Jede dieser Zahlen ist gleich wahrscheinlich.
A = Eine gerade Zahl wird geworfen
B = Eine Primzahl wird geworfen

Dann ist $A [mm] \cap [/mm] B = [mm] \{2\}$ [/mm] und $P(A [mm] \cap [/mm] B) = [mm] \frac{1}{6}.$ [/mm]

Gruß
Will

Bezug
                                                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:18 So 02.12.2007
Autor: Englein89

Hallo,

danke für die Antwort. Das ist schon das, was ich vermutet hatte, dass man das also eher durch Logik erschließen muss. Sicherliuch ist es aber hilfreich sich erstmal die Ergebnismenge aufzuschreiben und dadurch dann eben die möglichen Treffer durch die alle Möglichkeiten zu teilen, wie in dem Fall 1 durch 6.

Nur noch eine Frage: Gibt es bedingte Wahrscheinlichkeitsaufgaben auch für Bernoulliketten? Wir haben zwar keine Aufgaben solcher Art gemacht, aber ich wär halt trotzdem gern darauf vorbereitet, falls so etwas geht.

Bezug
                                                        
Bezug
Bedingte Wahrscheinlichkeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 04.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Bedingte Wahrscheinlichkeiten: Noch'n Beispiel
Status: (Antwort) fertig Status 
Datum: 14:15 So 02.12.2007
Autor: luis52


>  Aber um [mm]P_B(A)[/mm] zu berechnen,
> rechne ich doch auch wieder mit dem Bruch, der dann im
> Zähler wieder P(A [mm]\cap[/mm] B) lautet.

Da hast du schon Recht, nur wird mit [mm] $P_B(A)$ [/mm] eine weitere Moeglichkeit
der  Berechnung von Wsken eroeffnet. Angenommen, du willst wissen, wie
gross die Wsk ist, dass jemand Raucher und maennlich ist. Dann helfen die
dir die folgenden Infos:

1) 40 Prozent aller Maenner sind Raucher, in Formeln: [mm] $P_M(R)=0.4$ [/mm]
2) 50 Prozent aller Menschen sind maennlich, in Formeln: $P(M)=0.5$

Die gesuchte Wsk ist dann [mm] $P(R\cap M)=P_M(R)P(M)=0.4\times0.5=0.2$. [/mm]

lg Luis            


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de