www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bedingte Wahrscheinlichkeiten
Bedingte Wahrscheinlichkeiten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeiten: Stimmt die Lösung?
Status: (Frage) beantwortet Status 
Datum: 22:41 Do 19.09.2013
Autor: starki

Aufgabe
Bei einer Prüfung auf Funktionsfähigkeit eines elektronischen Bauteils wird ein defektes Bauteil mit 98%iger Sicherheit als defekt und ein normal arbeitendes mit 99%iger Sicherheit als funktionstüchtig erkannt. Die Fertigung arbeitet mit einem Anteil von 0,5% defekten Bauteilen (Erfahrungswert). Wie groß ist unter diesen Voraussetzungen die Wahrscheinlichkeit dafür, dass

a) ein geprüftes Bauteil dieser Fertigung als defekt eingestuft wird?
b) ein als defekt eingestuftes Bauteil auch tatsächlich defekt ist?
c) ein als funktionstüchtig eingestuftes Bauteil defekt ist?

Also ich habe meine zwei Ereignisse:

D = tatsäschlich defekt
[mm] \neg [/mm] D = tatsächlich funktionsfähig
E = als defekt erkannt
[mm] \neg [/mm] E = als funktionsfähig erkannt

Aus dem Text habe ich folgendes lesen können:
P(D) = 0,005
[mm] P(\neg [/mm] D) = 0,995
P(E|D) = 0,98
[mm] P(\neg [/mm] E|D) = 0,02
[mm] P(\neg E|\neg [/mm] D) = 0,99
P(E | [mm] \neg [/mm] D) = 0,01

a) [mm] P(E|\neg [/mm] D) = 0,01
b)
P(D | E) = [mm] \frac{P(E|D) * P(D)}{P(E)} [/mm] = [mm] \frac{P(E|D) * P(D)}{P(E|D)*P(D) + P(E|\neg D) * P(\neg D)} [/mm] = 0,32997

Bei b) bin ich mir mit der Antwort nicht ganz sicher...
c)

P(D | [mm] \neg [/mm] E) = [mm] \frac{P(\neg E | D) * P(D)}{P(\neg E)} [/mm] = [mm] \frac{P(\neg E| D) * P(D)}{P(\neg E|D) * P(D) + P(\neg E|\neg D) * P(\neg D)} [/mm] = 0,000102

        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Fr 20.09.2013
Autor: glie


> Bei einer Prüfung auf Funktionsfähigkeit eines
> elektronischen Bauteils wird ein defektes Bauteil mit
> 98%iger Sicherheit als defekt und ein normal arbeitendes
> mit 99%iger Sicherheit als funktionstüchtig erkannt. Die
> Fertigung arbeitet mit einem Anteil von 0,5% defekten
> Bauteilen (Erfahrungswert). Wie groß ist unter diesen
> Voraussetzungen die Wahrscheinlichkeit dafür, dass
>  
> a) ein geprüftes Bauteil dieser Fertigung als defekt
> eingestuft wird?
>  b) ein als defekt eingestuftes Bauteil auch tatsächlich
> defekt ist?
>  c) ein als funktionstüchtig eingestuftes Bauteil defekt
> ist?
>  Also ich habe meine zwei Ereignisse:
>
> D = tatsäschlich defekt
>  [mm]\neg[/mm] D = tatsächlich funktionsfähig
>  E = als defekt erkannt
>  [mm]\neg[/mm] E = als funktionsfähig erkannt
>  
> Aus dem Text habe ich folgendes lesen können:
>  P(D) = 0,005
>  [mm]P(\neg[/mm] D) = 0,995
>  P(E|D) = 0,98
>  [mm]P(\neg[/mm] E|D) = 0,02
>  [mm]P(\neg E|\neg[/mm] D) = 0,99
>  P(E | [mm]\neg[/mm] D) = 0,01
>  
> a) [mm]P(E|\neg[/mm] D) = 0,01
>  b)
> P(D | E) = [mm]\frac{P(E|D) * P(D)}{P(E)}[/mm] = [mm]\frac{P(E|D) * P(D)}{P(E|D)*P(D) + P(E|\neg D) * P(\neg D)}[/mm]
> = 0,32997
>  
> Bei b) bin ich mir mit der Antwort nicht ganz sicher...
>  c)
>  
> P(D | [mm]\neg[/mm] E) = [mm]\frac{P(\neg E | D) * P(D)}{P(\neg E)}[/mm] =
> [mm]\frac{P(\neg E| D) * P(D)}{P(\neg E|D) * P(D) + P(\neg E|\neg D) * P(\neg D)}[/mm]
> = 0,000102


Hallo,

bei der a) musst du einfach P(E) berechnen, die b) und c) sind richtig.

Gruß glie

Bezug
                
Bezug
Bedingte Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:34 Fr 20.09.2013
Autor: starki

Ach stimmt ja ... -_- ... hab da manchmal meine Probleme mit dem Herauslesen, was genau berechnet werden soll.

Aber Danke fürs Schauen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de