Bedingter Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:52 So 10.08.2014 | Autor: | petapahn |
Aufgabe | Sei [mm] \Omega=[-\bruch{1}{2},\bruch{1}{2}], \mathcal{F}=\mathcal{B}([-\bruch{1}{2},\bruch{1}{2}]), [/mm] P sei das Lebesgue-Maß. Seien X,Y Zufallsvariablen mit [mm] X(\omega)=\omega^2 [/mm] und [mm] Y(\omega)=\omega^3
[/mm]
Berechne E[X|Y] und E[Y|X] |
Hallo,
ich habe ein paar Verständnisprobleme, darum werde ich jetzt einfach weiter ausholen.
Es gilt offensichtlich: X: [mm] \Omega \to [0,\bruch{1}{4}] [/mm] und Y: [mm] \Omega \to [-\bruch{1}{8}, \bruch{1}{8}]
[/mm]
Nach Definition des bed. Erwartungswerts ist [mm] E[X|Y]=\bruch{E[X*1_{Y}]}{P(Y\le y)} [/mm] = [mm] \bruch{\integral_{-\infty}^{\infty}{\omega^2*1_{[0,\bruch{1}{4}]}(\omega^2)*1_{[-\bruch{1}{8},\bruch{1}{8}]}(\omega^2) d\omega}}{(\bruch{1}{8}+y)*1_{[-\bruch{1}{8},\bruch{1}{8}]}(y) + \bruch{1}{4}*1_{(\bruch{1}{8},\infty)}(y)} [/mm]
Alternativ könnte man E[X|Y] bestimmen, indem man [mm] P(X\le x|Y\le y)=\bruch{P(X\le x, Y\le y)}{P(Y\le y}) [/mm] berechnet.
Doch ich scheitere an der Berechnung von [mm] P(X\le [/mm] x, [mm] Y\le [/mm] y), denn ich hätte folgenden Ansatz genommen:
[mm] P(X\le [/mm] x, [mm] Y\le y)=P(\omega^2\le [/mm] x, [mm] \omega^3\le y)=P(\omega\le min(\sqrt{x},\wurzel[3]{y}))= \integral_{-\infty}^{min(\sqrt{x},\wurzel[3]{y})}{1_{[-\bruch{1}{2},\bruch{1}{2}]}(z) dz}= \integral_{-\bruch{1}{2}}^{min(\sqrt{x},\wurzel[3]{y},\bruch{1}{2})}{dz} [/mm]
Dann komm ich nicht mehr weiter. Wahrscheinlich ist das auch alles total falsch oder umständlich. Bitte um Hilfe.
LG, petapahn
|
|
|
|
Hiho,
> Nach Definition des bed. Erwartungswerts ist
> [mm]E[X|Y]=\bruch{E[X*1_{Y}]}{P(Y\le y)}[/mm]
Wo hast du das her? Was soll [mm] 1_Y [/mm] überhaupt sein? Ich wüsste nicht, wie die Indikatorfunktion einer Zufallsvariablen definiert sein sollte. Kannst du ja mal nachliefern, ob das bei Euch Sinn macht.
> Alternativ könnte man E[X|Y] bestimmen, indem man [mm]P(X\le x|Y\le y)=\bruch{P(X\le x, Y\le y)}{P(Y\le y})[/mm] berechnet.
Ja.
> [mm]P(X\le[/mm] x, [mm]Y\le y)=P(\omega^2\le[/mm] x, [mm][mm] \omega^3\le y)=P(\omega\le min(\sqrt{x},\wurzel[3]{y}))
[/mm]
Das letzte Gleichheitszeichen ist falsch, du verwendest da ja [mm] $\omega^2 \le [/mm] x [mm] \gdw \omega \le \sqrt{x}$, [/mm] was offensichtlich nicht stimmt.
Gruß,
Gono.
|
|
|
|
|
Hallo Gono,
Oh in meinem Skript steht: Sei X Zufallsvariable, A [mm] \in \mathcal{F} [/mm] mit P(A)>0, dann gilt: [mm] E[X|A]=\bruch{E[X*1_{A}]}{P(A)}, [/mm] wobei [mm] 1_{A} [/mm] charakteristische Funktion von A ist.
Also müsste es hier wohl eher heißen:
[mm] E[X|Y\le y]=\bruch{E[X*1_{Y\le y}]}{P(Y\le y)}
[/mm]
>
> [mm]P(X\le[/mm] x, [mm]Y\le y)=P(\omega^2\le[/mm] x, [mm][mm]\omega^3\le y)=P(\omega\le min(\sqrt{x},\wurzel[3]{y}))[/mm]
>>Das letzte Gleichheitszeichen ist falsch, du verwendest da ja [mm]\omega^2 \le x \gdw \omega \le \sqrt{x}[/mm], was offensichtlich nicht stimmt.
>>
Also müsste es dann heißen:
[mm]P(X\le[/mm] x, [mm]Y\le y)=P(\omega^2\le[/mm] x, [mm]\omega^3\le y)=P(-\sqrt{x} \le \omega\le min(\sqrt{x},\wurzel[3]{y}))[/mm][mm] =\integral_{-\sqrt{x}}^{min(\sqrt{x},\wurzel[3]{y})}{1_{[-\bruch{1}{2},\bruch{1}{2}]}(z) dz} [/mm] ?
LG, petapahn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Di 12.08.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Hallo,
Kann mir vllt jemand einen Tipp geben wie man hier [mm] P(X\le [/mm] x, [mm] Y\le [/mm] y) bzw. ob mein bisheriger Ansatz richtig oder falsch war?
LG petapahn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:52 So 17.08.2014 | Autor: | Gonozal_IX |
Hiho,
ich bin aktuell im Urlaub bis nächste Woche, daher auch die fehlende Antwort. Vielleicht findet sich bis dahin jemand anderes, oder du musst dich gedulden.
Gruß,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mo 25.08.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:04 Di 02.09.2014 | Autor: | petapahn |
Die Frage hat sich nun erledigt. Ich habe die Lösung auf anderem Wege herausgefunden. Trotzdem danke für die Bemühungen!
LG, petapahn
|
|
|
|